Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Structured version   Visualization version   GIF version

Theorem dia2dimlem3 41049
Description: Lemma for dia2dim 41060. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l = (le‘𝐾)
dia2dimlem3.j = (join‘𝐾)
dia2dimlem3.m = (meet‘𝐾)
dia2dimlem3.a 𝐴 = (Atoms‘𝐾)
dia2dimlem3.h 𝐻 = (LHyp‘𝐾)
dia2dimlem3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem3.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem3.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem3.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem3.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem3.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem3.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem3.uv (𝜑𝑈𝑉)
dia2dimlem3.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem3.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem3.d (𝜑𝐷𝑇)
dia2dimlem3.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem3 (𝜑 → (𝑅𝐷) = 𝑉)

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
3 dia2dimlem3.f . . . . . . . . 9 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
43simpld 494 . . . . . . . 8 (𝜑𝐹𝑇)
5 dia2dimlem3.p . . . . . . . 8 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 dia2dimlem3.l . . . . . . . . 9 = (le‘𝐾)
7 dia2dimlem3.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dia2dimlem3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 dia2dimlem3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9ltrnel 40122 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
111, 4, 5, 10syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1211simpld 494 . . . . . 6 (𝜑 → (𝐹𝑃) ∈ 𝐴)
13 dia2dimlem3.v . . . . . . 7 (𝜑 → (𝑉𝐴𝑉 𝑊))
1413simpld 494 . . . . . 6 (𝜑𝑉𝐴)
15 dia2dimlem3.j . . . . . . 7 = (join‘𝐾)
166, 15, 7hlatlej2 39359 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
172, 12, 14, 16syl3anc 1373 . . . . 5 (𝜑𝑉 ((𝐹𝑃) 𝑉))
182hllatd 39347 . . . . . 6 (𝜑𝐾 ∈ Lat)
19 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 7atbase 39272 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . 6 (𝜑𝑉 ∈ (Base‘𝐾))
2219, 15, 7hlatjcl 39350 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
232, 12, 14, 22syl3anc 1373 . . . . . 6 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
24 dia2dimlem3.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
256, 7, 8, 9, 24trlat 40152 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
261, 5, 3, 25syl3anc 1373 . . . . . . 7 (𝜑 → (𝑅𝐹) ∈ 𝐴)
27 dia2dimlem3.u . . . . . . . 8 (𝜑 → (𝑈𝐴𝑈 𝑊))
2827simpld 494 . . . . . . 7 (𝜑𝑈𝐴)
2919, 15, 7hlatjcl 39350 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
302, 26, 28, 29syl3anc 1373 . . . . . 6 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
31 dia2dimlem3.m . . . . . . 7 = (meet‘𝐾)
3219, 6, 31latmlem2 18376 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))) → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3318, 21, 23, 30, 32syl13anc 1374 . . . . 5 (𝜑 → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3417, 33mpd 15 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
35 dia2dimlem3.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
3615, 7hlatjcom 39351 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
372, 28, 14, 36syl3anc 1373 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
3835, 37breqtrd 5118 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
39 dia2dimlem3.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
406, 15, 7hlatexch2 39379 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
412, 26, 14, 28, 39, 40syl131anc 1385 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
4238, 41mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
4319, 6, 31latleeqm2 18374 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾)) → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4418, 21, 30, 43syl3anc 1373 . . . . 5 (𝜑 → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4542, 44mpbid 232 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) = 𝑉)
46 dia2dimlem3.d . . . . . 6 (𝜑𝐷𝑇)
47 dia2dimlem3.q . . . . . . 7 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
48 dia2dimlem3.uv . . . . . . 7 (𝜑𝑈𝑉)
496, 15, 31, 7, 8, 9, 24, 47, 1, 27, 13, 5, 3, 35, 48, 39dia2dimlem1 41047 . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
506, 15, 31, 7, 8, 9, 24trlval2 40146 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
511, 46, 49, 50syl3anc 1373 . . . . 5 (𝜑 → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
5247a1i 11 . . . . . . . . 9 (𝜑𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
53 dia2dimlem3.dv . . . . . . . . 9 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
5452, 53oveq12d 7367 . . . . . . . 8 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)))
555simpld 494 . . . . . . . . . 10 (𝜑𝑃𝐴)
5619, 15, 7hlatjcl 39350 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
572, 55, 28, 56syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
586, 15, 7hlatlej1 39358 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → (𝐹𝑃) ((𝐹𝑃) 𝑉))
592, 12, 14, 58syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐹𝑃) ((𝐹𝑃) 𝑉))
6019, 6, 15, 31, 7atmod4i1 39849 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) 𝑉)) → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
612, 12, 57, 23, 59, 60syl131anc 1385 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
6215, 7hlatj32 39355 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
632, 55, 28, 12, 62syl13anc 1374 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
6463oveq1d 7364 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6554, 61, 643eqtrd 2768 . . . . . . 7 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6665oveq1d 7364 . . . . . 6 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊))
67 hlol 39344 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
682, 67syl 17 . . . . . . 7 (𝜑𝐾 ∈ OL)
6919, 15, 7hlatjcl 39350 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
702, 55, 12, 69syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
7119, 7atbase 39272 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
7228, 71syl 17 . . . . . . . 8 (𝜑𝑈 ∈ (Base‘𝐾))
7319, 15latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
7418, 70, 72, 73syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
751simprd 495 . . . . . . . 8 (𝜑𝑊𝐻)
7619, 8lhpbase 39981 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7775, 76syl 17 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐾))
7819, 31latm32 39214 . . . . . . 7 ((𝐾 ∈ OL ∧ (((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
7968, 74, 23, 77, 78syl13anc 1374 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
806, 15, 31, 7, 8, 9, 24trlval2 40146 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
811, 4, 5, 80syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8281oveq1d 7364 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑈))
8327simprd 495 . . . . . . . . 9 (𝜑𝑈 𝑊)
8419, 6, 15, 31, 7atmod4i1 39849 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
852, 28, 70, 77, 83, 84syl131anc 1385 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
8682, 85eqtr2d 2765 . . . . . . 7 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑈) 𝑊) = ((𝑅𝐹) 𝑈))
8786oveq1d 7364 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8866, 79, 873eqtrd 2768 . . . . 5 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8951, 88eqtr2d 2765 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)) = (𝑅𝐷))
9034, 45, 893brtr3d 5123 . . 3 (𝜑𝑉 (𝑅𝐷))
91 hlatl 39343 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
922, 91syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
93 hlop 39345 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
942, 93syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
95 eqid 2729 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
96 eqid 2729 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9795, 96, 70ltat 39274 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑉𝐴) → (0.‘𝐾)(lt‘𝐾)𝑉)
9894, 14, 97syl2anc 584 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑉)
99 hlpos 39349 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1002, 99syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
10119, 95op0cl 39167 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10294, 101syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
10319, 8, 9, 24trlcl 40147 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → (𝑅𝐷) ∈ (Base‘𝐾))
1041, 46, 103syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅𝐷) ∈ (Base‘𝐾))
10519, 6, 96pltletr 18247 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑅𝐷) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
106100, 102, 21, 104, 105syl13anc 1374 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
10798, 90, 106mp2and 699 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷))
10819, 96, 95opltn0 39173 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐷) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
10994, 104, 108syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
110107, 109mpbid 232 . . . . . 6 (𝜑 → (𝑅𝐷) ≠ (0.‘𝐾))
111110neneqd 2930 . . . . 5 (𝜑 → ¬ (𝑅𝐷) = (0.‘𝐾))
11295, 7, 8, 9, 24trlator0 40154 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
1131, 46, 112syl2anc 584 . . . . . . 7 (𝜑 → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
114113orcomd 871 . . . . . 6 (𝜑 → ((𝑅𝐷) = (0.‘𝐾) ∨ (𝑅𝐷) ∈ 𝐴))
115114ord 864 . . . . 5 (𝜑 → (¬ (𝑅𝐷) = (0.‘𝐾) → (𝑅𝐷) ∈ 𝐴))
116111, 115mpd 15 . . . 4 (𝜑 → (𝑅𝐷) ∈ 𝐴)
1176, 7atcmp 39294 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑉𝐴 ∧ (𝑅𝐷) ∈ 𝐴) → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11892, 14, 116, 117syl3anc 1373 . . 3 (𝜑 → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11990, 118mpbid 232 . 2 (𝜑𝑉 = (𝑅𝐷))
120119eqcomd 2735 1 (𝜑 → (𝑅𝐷) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214  joincjn 18217  meetcmee 18218  0.cp0 18327  Latclat 18337  OPcops 39155  OLcol 39157  Atomscatm 39246  AtLatcal 39247  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  dia2dimlem5  41051
  Copyright terms: Public domain W3C validator