Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Structured version   Visualization version   GIF version

Theorem dia2dimlem3 40427
Description: Lemma for dia2dim 40438. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l = (le‘𝐾)
dia2dimlem3.j = (join‘𝐾)
dia2dimlem3.m = (meet‘𝐾)
dia2dimlem3.a 𝐴 = (Atoms‘𝐾)
dia2dimlem3.h 𝐻 = (LHyp‘𝐾)
dia2dimlem3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem3.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem3.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem3.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem3.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem3.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem3.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem3.uv (𝜑𝑈𝑉)
dia2dimlem3.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem3.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem3.d (𝜑𝐷𝑇)
dia2dimlem3.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem3 (𝜑 → (𝑅𝐷) = 𝑉)

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
3 dia2dimlem3.f . . . . . . . . 9 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
43simpld 494 . . . . . . . 8 (𝜑𝐹𝑇)
5 dia2dimlem3.p . . . . . . . 8 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 dia2dimlem3.l . . . . . . . . 9 = (le‘𝐾)
7 dia2dimlem3.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dia2dimlem3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 dia2dimlem3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9ltrnel 39500 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
111, 4, 5, 10syl3anc 1368 . . . . . . 7 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1211simpld 494 . . . . . 6 (𝜑 → (𝐹𝑃) ∈ 𝐴)
13 dia2dimlem3.v . . . . . . 7 (𝜑 → (𝑉𝐴𝑉 𝑊))
1413simpld 494 . . . . . 6 (𝜑𝑉𝐴)
15 dia2dimlem3.j . . . . . . 7 = (join‘𝐾)
166, 15, 7hlatlej2 38736 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
172, 12, 14, 16syl3anc 1368 . . . . 5 (𝜑𝑉 ((𝐹𝑃) 𝑉))
182hllatd 38724 . . . . . 6 (𝜑𝐾 ∈ Lat)
19 eqid 2724 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 7atbase 38649 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . 6 (𝜑𝑉 ∈ (Base‘𝐾))
2219, 15, 7hlatjcl 38727 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
232, 12, 14, 22syl3anc 1368 . . . . . 6 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
24 dia2dimlem3.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
256, 7, 8, 9, 24trlat 39530 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
261, 5, 3, 25syl3anc 1368 . . . . . . 7 (𝜑 → (𝑅𝐹) ∈ 𝐴)
27 dia2dimlem3.u . . . . . . . 8 (𝜑 → (𝑈𝐴𝑈 𝑊))
2827simpld 494 . . . . . . 7 (𝜑𝑈𝐴)
2919, 15, 7hlatjcl 38727 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
302, 26, 28, 29syl3anc 1368 . . . . . 6 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
31 dia2dimlem3.m . . . . . . 7 = (meet‘𝐾)
3219, 6, 31latmlem2 18425 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))) → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3318, 21, 23, 30, 32syl13anc 1369 . . . . 5 (𝜑 → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3417, 33mpd 15 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
35 dia2dimlem3.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
3615, 7hlatjcom 38728 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
372, 28, 14, 36syl3anc 1368 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
3835, 37breqtrd 5164 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
39 dia2dimlem3.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
406, 15, 7hlatexch2 38757 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
412, 26, 14, 28, 39, 40syl131anc 1380 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
4238, 41mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
4319, 6, 31latleeqm2 18423 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾)) → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4418, 21, 30, 43syl3anc 1368 . . . . 5 (𝜑 → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4542, 44mpbid 231 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) = 𝑉)
46 dia2dimlem3.d . . . . . 6 (𝜑𝐷𝑇)
47 dia2dimlem3.q . . . . . . 7 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
48 dia2dimlem3.uv . . . . . . 7 (𝜑𝑈𝑉)
496, 15, 31, 7, 8, 9, 24, 47, 1, 27, 13, 5, 3, 35, 48, 39dia2dimlem1 40425 . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
506, 15, 31, 7, 8, 9, 24trlval2 39524 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
511, 46, 49, 50syl3anc 1368 . . . . 5 (𝜑 → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
5247a1i 11 . . . . . . . . 9 (𝜑𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
53 dia2dimlem3.dv . . . . . . . . 9 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
5452, 53oveq12d 7419 . . . . . . . 8 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)))
555simpld 494 . . . . . . . . . 10 (𝜑𝑃𝐴)
5619, 15, 7hlatjcl 38727 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
572, 55, 28, 56syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
586, 15, 7hlatlej1 38735 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → (𝐹𝑃) ((𝐹𝑃) 𝑉))
592, 12, 14, 58syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝐹𝑃) ((𝐹𝑃) 𝑉))
6019, 6, 15, 31, 7atmod4i1 39227 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) 𝑉)) → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
612, 12, 57, 23, 59, 60syl131anc 1380 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
6215, 7hlatj32 38732 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
632, 55, 28, 12, 62syl13anc 1369 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
6463oveq1d 7416 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6554, 61, 643eqtrd 2768 . . . . . . 7 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6665oveq1d 7416 . . . . . 6 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊))
67 hlol 38721 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
682, 67syl 17 . . . . . . 7 (𝜑𝐾 ∈ OL)
6919, 15, 7hlatjcl 38727 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
702, 55, 12, 69syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
7119, 7atbase 38649 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
7228, 71syl 17 . . . . . . . 8 (𝜑𝑈 ∈ (Base‘𝐾))
7319, 15latjcl 18394 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
7418, 70, 72, 73syl3anc 1368 . . . . . . 7 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
751simprd 495 . . . . . . . 8 (𝜑𝑊𝐻)
7619, 8lhpbase 39359 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7775, 76syl 17 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐾))
7819, 31latm32 38591 . . . . . . 7 ((𝐾 ∈ OL ∧ (((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
7968, 74, 23, 77, 78syl13anc 1369 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
806, 15, 31, 7, 8, 9, 24trlval2 39524 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
811, 4, 5, 80syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8281oveq1d 7416 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑈))
8327simprd 495 . . . . . . . . 9 (𝜑𝑈 𝑊)
8419, 6, 15, 31, 7atmod4i1 39227 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
852, 28, 70, 77, 83, 84syl131anc 1380 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
8682, 85eqtr2d 2765 . . . . . . 7 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑈) 𝑊) = ((𝑅𝐹) 𝑈))
8786oveq1d 7416 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8866, 79, 873eqtrd 2768 . . . . 5 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8951, 88eqtr2d 2765 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)) = (𝑅𝐷))
9034, 45, 893brtr3d 5169 . . 3 (𝜑𝑉 (𝑅𝐷))
91 hlatl 38720 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
922, 91syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
93 hlop 38722 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
942, 93syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
95 eqid 2724 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
96 eqid 2724 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9795, 96, 70ltat 38651 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑉𝐴) → (0.‘𝐾)(lt‘𝐾)𝑉)
9894, 14, 97syl2anc 583 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑉)
99 hlpos 38726 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1002, 99syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
10119, 95op0cl 38544 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10294, 101syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
10319, 8, 9, 24trlcl 39525 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → (𝑅𝐷) ∈ (Base‘𝐾))
1041, 46, 103syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑅𝐷) ∈ (Base‘𝐾))
10519, 6, 96pltletr 18298 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑅𝐷) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
106100, 102, 21, 104, 105syl13anc 1369 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
10798, 90, 106mp2and 696 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷))
10819, 96, 95opltn0 38550 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐷) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
10994, 104, 108syl2anc 583 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
110107, 109mpbid 231 . . . . . 6 (𝜑 → (𝑅𝐷) ≠ (0.‘𝐾))
111110neneqd 2937 . . . . 5 (𝜑 → ¬ (𝑅𝐷) = (0.‘𝐾))
11295, 7, 8, 9, 24trlator0 39532 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
1131, 46, 112syl2anc 583 . . . . . . 7 (𝜑 → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
114113orcomd 868 . . . . . 6 (𝜑 → ((𝑅𝐷) = (0.‘𝐾) ∨ (𝑅𝐷) ∈ 𝐴))
115114ord 861 . . . . 5 (𝜑 → (¬ (𝑅𝐷) = (0.‘𝐾) → (𝑅𝐷) ∈ 𝐴))
116111, 115mpd 15 . . . 4 (𝜑 → (𝑅𝐷) ∈ 𝐴)
1176, 7atcmp 38671 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑉𝐴 ∧ (𝑅𝐷) ∈ 𝐴) → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11892, 14, 116, 117syl3anc 1368 . . 3 (𝜑 → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11990, 118mpbid 231 . 2 (𝜑𝑉 = (𝑅𝐷))
120119eqcomd 2730 1 (𝜑 → (𝑅𝐷) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2932   class class class wbr 5138  cfv 6533  (class class class)co 7401  Basecbs 17143  lecple 17203  Posetcpo 18262  ltcplt 18263  joincjn 18266  meetcmee 18267  0.cp0 18378  Latclat 18386  OPcops 38532  OLcol 38534  Atomscatm 38623  AtLatcal 38624  HLchlt 38710  LHypclh 39345  LTrncltrn 39462  trLctrl 39519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8818  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-llines 38859  df-psubsp 38864  df-pmap 38865  df-padd 39157  df-lhyp 39349  df-laut 39350  df-ldil 39465  df-ltrn 39466  df-trl 39520
This theorem is referenced by:  dia2dimlem5  40429
  Copyright terms: Public domain W3C validator