Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Structured version   Visualization version   GIF version

Theorem dia2dimlem3 41067
Description: Lemma for dia2dim 41078. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l = (le‘𝐾)
dia2dimlem3.j = (join‘𝐾)
dia2dimlem3.m = (meet‘𝐾)
dia2dimlem3.a 𝐴 = (Atoms‘𝐾)
dia2dimlem3.h 𝐻 = (LHyp‘𝐾)
dia2dimlem3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem3.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem3.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem3.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem3.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem3.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem3.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem3.uv (𝜑𝑈𝑉)
dia2dimlem3.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem3.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem3.d (𝜑𝐷𝑇)
dia2dimlem3.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem3 (𝜑 → (𝑅𝐷) = 𝑉)

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
3 dia2dimlem3.f . . . . . . . . 9 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
43simpld 494 . . . . . . . 8 (𝜑𝐹𝑇)
5 dia2dimlem3.p . . . . . . . 8 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 dia2dimlem3.l . . . . . . . . 9 = (le‘𝐾)
7 dia2dimlem3.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dia2dimlem3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 dia2dimlem3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9ltrnel 40140 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
111, 4, 5, 10syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1211simpld 494 . . . . . 6 (𝜑 → (𝐹𝑃) ∈ 𝐴)
13 dia2dimlem3.v . . . . . . 7 (𝜑 → (𝑉𝐴𝑉 𝑊))
1413simpld 494 . . . . . 6 (𝜑𝑉𝐴)
15 dia2dimlem3.j . . . . . . 7 = (join‘𝐾)
166, 15, 7hlatlej2 39376 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
172, 12, 14, 16syl3anc 1373 . . . . 5 (𝜑𝑉 ((𝐹𝑃) 𝑉))
182hllatd 39364 . . . . . 6 (𝜑𝐾 ∈ Lat)
19 eqid 2730 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 7atbase 39289 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . 6 (𝜑𝑉 ∈ (Base‘𝐾))
2219, 15, 7hlatjcl 39367 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
232, 12, 14, 22syl3anc 1373 . . . . . 6 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
24 dia2dimlem3.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
256, 7, 8, 9, 24trlat 40170 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
261, 5, 3, 25syl3anc 1373 . . . . . . 7 (𝜑 → (𝑅𝐹) ∈ 𝐴)
27 dia2dimlem3.u . . . . . . . 8 (𝜑 → (𝑈𝐴𝑈 𝑊))
2827simpld 494 . . . . . . 7 (𝜑𝑈𝐴)
2919, 15, 7hlatjcl 39367 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
302, 26, 28, 29syl3anc 1373 . . . . . 6 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
31 dia2dimlem3.m . . . . . . 7 = (meet‘𝐾)
3219, 6, 31latmlem2 18436 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))) → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3318, 21, 23, 30, 32syl13anc 1374 . . . . 5 (𝜑 → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3417, 33mpd 15 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
35 dia2dimlem3.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
3615, 7hlatjcom 39368 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
372, 28, 14, 36syl3anc 1373 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
3835, 37breqtrd 5136 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
39 dia2dimlem3.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
406, 15, 7hlatexch2 39397 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
412, 26, 14, 28, 39, 40syl131anc 1385 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
4238, 41mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
4319, 6, 31latleeqm2 18434 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾)) → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4418, 21, 30, 43syl3anc 1373 . . . . 5 (𝜑 → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4542, 44mpbid 232 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) = 𝑉)
46 dia2dimlem3.d . . . . . 6 (𝜑𝐷𝑇)
47 dia2dimlem3.q . . . . . . 7 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
48 dia2dimlem3.uv . . . . . . 7 (𝜑𝑈𝑉)
496, 15, 31, 7, 8, 9, 24, 47, 1, 27, 13, 5, 3, 35, 48, 39dia2dimlem1 41065 . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
506, 15, 31, 7, 8, 9, 24trlval2 40164 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
511, 46, 49, 50syl3anc 1373 . . . . 5 (𝜑 → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
5247a1i 11 . . . . . . . . 9 (𝜑𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
53 dia2dimlem3.dv . . . . . . . . 9 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
5452, 53oveq12d 7408 . . . . . . . 8 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)))
555simpld 494 . . . . . . . . . 10 (𝜑𝑃𝐴)
5619, 15, 7hlatjcl 39367 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
572, 55, 28, 56syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
586, 15, 7hlatlej1 39375 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → (𝐹𝑃) ((𝐹𝑃) 𝑉))
592, 12, 14, 58syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐹𝑃) ((𝐹𝑃) 𝑉))
6019, 6, 15, 31, 7atmod4i1 39867 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) 𝑉)) → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
612, 12, 57, 23, 59, 60syl131anc 1385 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
6215, 7hlatj32 39372 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
632, 55, 28, 12, 62syl13anc 1374 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
6463oveq1d 7405 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6554, 61, 643eqtrd 2769 . . . . . . 7 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6665oveq1d 7405 . . . . . 6 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊))
67 hlol 39361 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
682, 67syl 17 . . . . . . 7 (𝜑𝐾 ∈ OL)
6919, 15, 7hlatjcl 39367 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
702, 55, 12, 69syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
7119, 7atbase 39289 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
7228, 71syl 17 . . . . . . . 8 (𝜑𝑈 ∈ (Base‘𝐾))
7319, 15latjcl 18405 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
7418, 70, 72, 73syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
751simprd 495 . . . . . . . 8 (𝜑𝑊𝐻)
7619, 8lhpbase 39999 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7775, 76syl 17 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐾))
7819, 31latm32 39231 . . . . . . 7 ((𝐾 ∈ OL ∧ (((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
7968, 74, 23, 77, 78syl13anc 1374 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
806, 15, 31, 7, 8, 9, 24trlval2 40164 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
811, 4, 5, 80syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8281oveq1d 7405 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑈))
8327simprd 495 . . . . . . . . 9 (𝜑𝑈 𝑊)
8419, 6, 15, 31, 7atmod4i1 39867 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
852, 28, 70, 77, 83, 84syl131anc 1385 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
8682, 85eqtr2d 2766 . . . . . . 7 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑈) 𝑊) = ((𝑅𝐹) 𝑈))
8786oveq1d 7405 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8866, 79, 873eqtrd 2769 . . . . 5 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8951, 88eqtr2d 2766 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)) = (𝑅𝐷))
9034, 45, 893brtr3d 5141 . . 3 (𝜑𝑉 (𝑅𝐷))
91 hlatl 39360 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
922, 91syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
93 hlop 39362 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
942, 93syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
95 eqid 2730 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
96 eqid 2730 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9795, 96, 70ltat 39291 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑉𝐴) → (0.‘𝐾)(lt‘𝐾)𝑉)
9894, 14, 97syl2anc 584 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑉)
99 hlpos 39366 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1002, 99syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
10119, 95op0cl 39184 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10294, 101syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
10319, 8, 9, 24trlcl 40165 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → (𝑅𝐷) ∈ (Base‘𝐾))
1041, 46, 103syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅𝐷) ∈ (Base‘𝐾))
10519, 6, 96pltletr 18309 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑅𝐷) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
106100, 102, 21, 104, 105syl13anc 1374 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
10798, 90, 106mp2and 699 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷))
10819, 96, 95opltn0 39190 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐷) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
10994, 104, 108syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
110107, 109mpbid 232 . . . . . 6 (𝜑 → (𝑅𝐷) ≠ (0.‘𝐾))
111110neneqd 2931 . . . . 5 (𝜑 → ¬ (𝑅𝐷) = (0.‘𝐾))
11295, 7, 8, 9, 24trlator0 40172 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
1131, 46, 112syl2anc 584 . . . . . . 7 (𝜑 → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
114113orcomd 871 . . . . . 6 (𝜑 → ((𝑅𝐷) = (0.‘𝐾) ∨ (𝑅𝐷) ∈ 𝐴))
115114ord 864 . . . . 5 (𝜑 → (¬ (𝑅𝐷) = (0.‘𝐾) → (𝑅𝐷) ∈ 𝐴))
116111, 115mpd 15 . . . 4 (𝜑 → (𝑅𝐷) ∈ 𝐴)
1176, 7atcmp 39311 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑉𝐴 ∧ (𝑅𝐷) ∈ 𝐴) → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11892, 14, 116, 117syl3anc 1373 . . 3 (𝜑 → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11990, 118mpbid 232 . 2 (𝜑𝑉 = (𝑅𝐷))
120119eqcomd 2736 1 (𝜑 → (𝑅𝐷) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  Posetcpo 18275  ltcplt 18276  joincjn 18279  meetcmee 18280  0.cp0 18389  Latclat 18397  OPcops 39172  OLcol 39174  Atomscatm 39263  AtLatcal 39264  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  dia2dimlem5  41069
  Copyright terms: Public domain W3C validator