Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Structured version   Visualization version   GIF version

Theorem dia2dimlem3 41068
Description: Lemma for dia2dim 41079. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l = (le‘𝐾)
dia2dimlem3.j = (join‘𝐾)
dia2dimlem3.m = (meet‘𝐾)
dia2dimlem3.a 𝐴 = (Atoms‘𝐾)
dia2dimlem3.h 𝐻 = (LHyp‘𝐾)
dia2dimlem3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem3.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem3.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem3.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem3.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem3.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem3.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem3.uv (𝜑𝑈𝑉)
dia2dimlem3.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem3.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem3.d (𝜑𝐷𝑇)
dia2dimlem3.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem3 (𝜑 → (𝑅𝐷) = 𝑉)

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
3 dia2dimlem3.f . . . . . . . . 9 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
43simpld 494 . . . . . . . 8 (𝜑𝐹𝑇)
5 dia2dimlem3.p . . . . . . . 8 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 dia2dimlem3.l . . . . . . . . 9 = (le‘𝐾)
7 dia2dimlem3.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dia2dimlem3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 dia2dimlem3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9ltrnel 40141 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
111, 4, 5, 10syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1211simpld 494 . . . . . 6 (𝜑 → (𝐹𝑃) ∈ 𝐴)
13 dia2dimlem3.v . . . . . . 7 (𝜑 → (𝑉𝐴𝑉 𝑊))
1413simpld 494 . . . . . 6 (𝜑𝑉𝐴)
15 dia2dimlem3.j . . . . . . 7 = (join‘𝐾)
166, 15, 7hlatlej2 39377 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
172, 12, 14, 16syl3anc 1373 . . . . 5 (𝜑𝑉 ((𝐹𝑃) 𝑉))
182hllatd 39365 . . . . . 6 (𝜑𝐾 ∈ Lat)
19 eqid 2737 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 7atbase 39290 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . 6 (𝜑𝑉 ∈ (Base‘𝐾))
2219, 15, 7hlatjcl 39368 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
232, 12, 14, 22syl3anc 1373 . . . . . 6 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
24 dia2dimlem3.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
256, 7, 8, 9, 24trlat 40171 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
261, 5, 3, 25syl3anc 1373 . . . . . . 7 (𝜑 → (𝑅𝐹) ∈ 𝐴)
27 dia2dimlem3.u . . . . . . . 8 (𝜑 → (𝑈𝐴𝑈 𝑊))
2827simpld 494 . . . . . . 7 (𝜑𝑈𝐴)
2919, 15, 7hlatjcl 39368 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
302, 26, 28, 29syl3anc 1373 . . . . . 6 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
31 dia2dimlem3.m . . . . . . 7 = (meet‘𝐾)
3219, 6, 31latmlem2 18515 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))) → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3318, 21, 23, 30, 32syl13anc 1374 . . . . 5 (𝜑 → (𝑉 ((𝐹𝑃) 𝑉) → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉))))
3417, 33mpd 15 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
35 dia2dimlem3.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
3615, 7hlatjcom 39369 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
372, 28, 14, 36syl3anc 1373 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
3835, 37breqtrd 5169 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
39 dia2dimlem3.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
406, 15, 7hlatexch2 39398 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
412, 26, 14, 28, 39, 40syl131anc 1385 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
4238, 41mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
4319, 6, 31latleeqm2 18513 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾)) → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4418, 21, 30, 43syl3anc 1373 . . . . 5 (𝜑 → (𝑉 ((𝑅𝐹) 𝑈) ↔ (((𝑅𝐹) 𝑈) 𝑉) = 𝑉))
4542, 44mpbid 232 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) 𝑉) = 𝑉)
46 dia2dimlem3.d . . . . . 6 (𝜑𝐷𝑇)
47 dia2dimlem3.q . . . . . . 7 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
48 dia2dimlem3.uv . . . . . . 7 (𝜑𝑈𝑉)
496, 15, 31, 7, 8, 9, 24, 47, 1, 27, 13, 5, 3, 35, 48, 39dia2dimlem1 41066 . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
506, 15, 31, 7, 8, 9, 24trlval2 40165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
511, 46, 49, 50syl3anc 1373 . . . . 5 (𝜑 → (𝑅𝐷) = ((𝑄 (𝐷𝑄)) 𝑊))
5247a1i 11 . . . . . . . . 9 (𝜑𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
53 dia2dimlem3.dv . . . . . . . . 9 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
5452, 53oveq12d 7449 . . . . . . . 8 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)))
555simpld 494 . . . . . . . . . 10 (𝜑𝑃𝐴)
5619, 15, 7hlatjcl 39368 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
572, 55, 28, 56syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
586, 15, 7hlatlej1 39376 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → (𝐹𝑃) ((𝐹𝑃) 𝑉))
592, 12, 14, 58syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐹𝑃) ((𝐹𝑃) 𝑉))
6019, 6, 15, 31, 7atmod4i1 39868 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) 𝑉)) → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
612, 12, 57, 23, 59, 60syl131anc 1385 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝐹𝑃)) = (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)))
6215, 7hlatj32 39373 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
632, 55, 28, 12, 62syl13anc 1374 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) (𝐹𝑃)) = ((𝑃 (𝐹𝑃)) 𝑈))
6463oveq1d 7446 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝐹𝑃)) ((𝐹𝑃) 𝑉)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6554, 61, 643eqtrd 2781 . . . . . . 7 (𝜑 → (𝑄 (𝐷𝑄)) = (((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)))
6665oveq1d 7446 . . . . . 6 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊))
67 hlol 39362 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
682, 67syl 17 . . . . . . 7 (𝜑𝐾 ∈ OL)
6919, 15, 7hlatjcl 39368 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
702, 55, 12, 69syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
7119, 7atbase 39290 . . . . . . . . 9 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
7228, 71syl 17 . . . . . . . 8 (𝜑𝑈 ∈ (Base‘𝐾))
7319, 15latjcl 18484 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
7418, 70, 72, 73syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾))
751simprd 495 . . . . . . . 8 (𝜑𝑊𝐻)
7619, 8lhpbase 40000 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7775, 76syl 17 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐾))
7819, 31latm32 39232 . . . . . . 7 ((𝐾 ∈ OL ∧ (((𝑃 (𝐹𝑃)) 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
7968, 74, 23, 77, 78syl13anc 1374 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) ((𝐹𝑃) 𝑉)) 𝑊) = ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)))
806, 15, 31, 7, 8, 9, 24trlval2 40165 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
811, 4, 5, 80syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8281oveq1d 7446 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑈))
8327simprd 495 . . . . . . . . 9 (𝜑𝑈 𝑊)
8419, 6, 15, 31, 7atmod4i1 39868 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
852, 28, 70, 77, 83, 84syl131anc 1385 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑈) = (((𝑃 (𝐹𝑃)) 𝑈) 𝑊))
8682, 85eqtr2d 2778 . . . . . . 7 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑈) 𝑊) = ((𝑅𝐹) 𝑈))
8786oveq1d 7446 . . . . . 6 (𝜑 → ((((𝑃 (𝐹𝑃)) 𝑈) 𝑊) ((𝐹𝑃) 𝑉)) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8866, 79, 873eqtrd 2781 . . . . 5 (𝜑 → ((𝑄 (𝐷𝑄)) 𝑊) = (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)))
8951, 88eqtr2d 2778 . . . 4 (𝜑 → (((𝑅𝐹) 𝑈) ((𝐹𝑃) 𝑉)) = (𝑅𝐷))
9034, 45, 893brtr3d 5174 . . 3 (𝜑𝑉 (𝑅𝐷))
91 hlatl 39361 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
922, 91syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
93 hlop 39363 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
942, 93syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
95 eqid 2737 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
96 eqid 2737 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9795, 96, 70ltat 39292 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑉𝐴) → (0.‘𝐾)(lt‘𝐾)𝑉)
9894, 14, 97syl2anc 584 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑉)
99 hlpos 39367 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1002, 99syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
10119, 95op0cl 39185 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10294, 101syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
10319, 8, 9, 24trlcl 40166 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → (𝑅𝐷) ∈ (Base‘𝐾))
1041, 46, 103syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅𝐷) ∈ (Base‘𝐾))
10519, 6, 96pltletr 18388 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑅𝐷) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
106100, 102, 21, 104, 105syl13anc 1374 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑉𝑉 (𝑅𝐷)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷)))
10798, 90, 106mp2and 699 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐷))
10819, 96, 95opltn0 39191 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐷) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
10994, 104, 108syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐷) ↔ (𝑅𝐷) ≠ (0.‘𝐾)))
110107, 109mpbid 232 . . . . . 6 (𝜑 → (𝑅𝐷) ≠ (0.‘𝐾))
111110neneqd 2945 . . . . 5 (𝜑 → ¬ (𝑅𝐷) = (0.‘𝐾))
11295, 7, 8, 9, 24trlator0 40173 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
1131, 46, 112syl2anc 584 . . . . . . 7 (𝜑 → ((𝑅𝐷) ∈ 𝐴 ∨ (𝑅𝐷) = (0.‘𝐾)))
114113orcomd 872 . . . . . 6 (𝜑 → ((𝑅𝐷) = (0.‘𝐾) ∨ (𝑅𝐷) ∈ 𝐴))
115114ord 865 . . . . 5 (𝜑 → (¬ (𝑅𝐷) = (0.‘𝐾) → (𝑅𝐷) ∈ 𝐴))
116111, 115mpd 15 . . . 4 (𝜑 → (𝑅𝐷) ∈ 𝐴)
1176, 7atcmp 39312 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑉𝐴 ∧ (𝑅𝐷) ∈ 𝐴) → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11892, 14, 116, 117syl3anc 1373 . . 3 (𝜑 → (𝑉 (𝑅𝐷) ↔ 𝑉 = (𝑅𝐷)))
11990, 118mpbid 232 . 2 (𝜑𝑉 = (𝑅𝐷))
120119eqcomd 2743 1 (𝜑 → (𝑅𝐷) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  Posetcpo 18353  ltcplt 18354  joincjn 18357  meetcmee 18358  0.cp0 18468  Latclat 18476  OPcops 39173  OLcol 39175  Atomscatm 39264  AtLatcal 39265  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  trLctrl 40160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161
This theorem is referenced by:  dia2dimlem5  41070
  Copyright terms: Public domain W3C validator