![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfaddmnf | Structured version Visualization version GIF version |
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11344 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | mnfxr 11347 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xaddval 13285 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
5 | eqid 2740 | . . 3 ⊢ +∞ = +∞ | |
6 | 5 | iftruei 4555 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
7 | eqid 2740 | . . 3 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4555 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
9 | 4, 6, 8 | 3eqtri 2772 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ifcif 4548 (class class class)co 7448 0cc0 11184 + caddc 11187 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 +𝑒 cxad 13173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pnf 11326 df-mnf 11327 df-xr 11328 df-xadd 13176 |
This theorem is referenced by: xnegid 13300 xaddcom 13302 xnegdi 13310 xsubge0 13323 xlesubadd 13325 xadddilem 13356 xblss2 24433 |
Copyright terms: Public domain | W3C validator |