MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfaddmnf Structured version   Visualization version   GIF version

Theorem pnfaddmnf 12473
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
pnfaddmnf (+∞ +𝑒 -∞) = 0

Proof of Theorem pnfaddmnf
StepHypRef Expression
1 pnfxr 10541 . . 3 +∞ ∈ ℝ*
2 mnfxr 10545 . . 3 -∞ ∈ ℝ*
3 xaddval 12466 . . 3 ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))))
41, 2, 3mp2an 688 . 2 (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))
5 eqid 2795 . . 3 +∞ = +∞
65iftruei 4388 . 2 if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞)
7 eqid 2795 . . 3 -∞ = -∞
87iftruei 4388 . 2 if(-∞ = -∞, 0, +∞) = 0
94, 6, 83eqtri 2823 1 (+∞ +𝑒 -∞) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  ifcif 4381  (class class class)co 7016  0cc0 10383   + caddc 10386  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   +𝑒 cxad 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-mulcl 10445  ax-i2m1 10451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-pnf 10523  df-mnf 10524  df-xr 10525  df-xadd 12358
This theorem is referenced by:  xnegid  12481  xaddcom  12483  xnegdi  12491  xsubge0  12504  xlesubadd  12506  xadddilem  12537  xblss2  22695
  Copyright terms: Public domain W3C validator