Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfaddmnf | Structured version Visualization version GIF version |
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10887 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | mnfxr 10890 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xaddval 12813 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
5 | eqid 2737 | . . 3 ⊢ +∞ = +∞ | |
6 | 5 | iftruei 4446 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
7 | eqid 2737 | . . 3 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4446 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
9 | 4, 6, 8 | 3eqtri 2769 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 ifcif 4439 (class class class)co 7213 0cc0 10729 + caddc 10732 +∞cpnf 10864 -∞cmnf 10865 ℝ*cxr 10866 +𝑒 cxad 12702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-mulcl 10791 ax-i2m1 10797 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-pnf 10869 df-mnf 10870 df-xr 10871 df-xadd 12705 |
This theorem is referenced by: xnegid 12828 xaddcom 12830 xnegdi 12838 xsubge0 12851 xlesubadd 12853 xadddilem 12884 xblss2 23300 |
Copyright terms: Public domain | W3C validator |