Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfaddmnf | Structured version Visualization version GIF version |
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11029 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | mnfxr 11032 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xaddval 12957 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
5 | eqid 2738 | . . 3 ⊢ +∞ = +∞ | |
6 | 5 | iftruei 4466 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
7 | eqid 2738 | . . 3 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4466 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
9 | 4, 6, 8 | 3eqtri 2770 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ifcif 4459 (class class class)co 7275 0cc0 10871 + caddc 10874 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 +𝑒 cxad 12846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pnf 11011 df-mnf 11012 df-xr 11013 df-xadd 12849 |
This theorem is referenced by: xnegid 12972 xaddcom 12974 xnegdi 12982 xsubge0 12995 xlesubadd 12997 xadddilem 13028 xblss2 23555 |
Copyright terms: Public domain | W3C validator |