![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfaddmnf | Structured version Visualization version GIF version |
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11313 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | mnfxr 11316 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xaddval 13262 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
5 | eqid 2735 | . . 3 ⊢ +∞ = +∞ | |
6 | 5 | iftruei 4538 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
7 | eqid 2735 | . . 3 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4538 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
9 | 4, 6, 8 | 3eqtri 2767 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ifcif 4531 (class class class)co 7431 0cc0 11153 + caddc 11156 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 +𝑒 cxad 13150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pnf 11295 df-mnf 11296 df-xr 11297 df-xadd 13153 |
This theorem is referenced by: xnegid 13277 xaddcom 13279 xnegdi 13287 xsubge0 13300 xlesubadd 13302 xadddilem 13333 xblss2 24428 |
Copyright terms: Public domain | W3C validator |