| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfaddmnf | Structured version Visualization version GIF version | ||
| Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | mnfxr 11172 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xaddval 13125 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
| 5 | eqid 2729 | . . 3 ⊢ +∞ = +∞ | |
| 6 | 5 | iftruei 4483 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
| 7 | eqid 2729 | . . 3 ⊢ -∞ = -∞ | |
| 8 | 7 | iftruei 4483 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
| 9 | 4, 6, 8 | 3eqtri 2756 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4476 (class class class)co 7349 0cc0 11009 + caddc 11012 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 +𝑒 cxad 13012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-i2m1 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-pnf 11151 df-mnf 11152 df-xr 11153 df-xadd 13015 |
| This theorem is referenced by: xnegid 13140 xaddcom 13142 xnegdi 13150 xsubge0 13163 xlesubadd 13165 xadddilem 13196 xblss2 24288 |
| Copyright terms: Public domain | W3C validator |