![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfaddmnf | Structured version Visualization version GIF version |
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10541 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | mnfxr 10545 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xaddval 12466 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
4 | 1, 2, 3 | mp2an 688 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
5 | eqid 2795 | . . 3 ⊢ +∞ = +∞ | |
6 | 5 | iftruei 4388 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
7 | eqid 2795 | . . 3 ⊢ -∞ = -∞ | |
8 | 7 | iftruei 4388 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
9 | 4, 6, 8 | 3eqtri 2823 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 ifcif 4381 (class class class)co 7016 0cc0 10383 + caddc 10386 +∞cpnf 10518 -∞cmnf 10519 ℝ*cxr 10520 +𝑒 cxad 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-mulcl 10445 ax-i2m1 10451 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-iota 6189 df-fun 6227 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-pnf 10523 df-mnf 10524 df-xr 10525 df-xadd 12358 |
This theorem is referenced by: xnegid 12481 xaddcom 12483 xnegdi 12491 xsubge0 12504 xlesubadd 12506 xadddilem 12537 xblss2 22695 |
Copyright terms: Public domain | W3C validator |