Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polcon4bN Structured version   Visualization version   GIF version

Theorem 2polcon4bN 39905
Description: Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polcon4bN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) ↔ ( 𝑌) ⊆ ( 𝑋)))

Proof of Theorem 2polcon4bN
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → 𝐾 ∈ HL)
2 simp1 1136 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝐾 ∈ HL)
3 2polss.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
4 2polss.p . . . . . . . . 9 = (⊥𝑃𝐾)
53, 4polssatN 39895 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
653adant2 1131 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
73, 4polssatN 39895 . . . . . . 7 ((𝐾 ∈ HL ∧ ( 𝑌) ⊆ 𝐴) → ( ‘( 𝑌)) ⊆ 𝐴)
82, 6, 7syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( 𝑌)) ⊆ 𝐴)
98adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( 𝑌)) ⊆ 𝐴)
10 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
113, 4polcon3N 39904 . . . . 5 ((𝐾 ∈ HL ∧ ( ‘( 𝑌)) ⊆ 𝐴 ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋))))
121, 9, 10, 11syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋))))
1312ex 412 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) → ( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋)))))
143, 43polN 39903 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( ‘( 𝑌))) = ( 𝑌))
15143adant2 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( ‘( 𝑌))) = ( 𝑌))
163, 43polN 39903 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( ‘( 𝑋))) = ( 𝑋))
17163adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( ‘( 𝑋))) = ( 𝑋))
1815, 17sseq12d 3977 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋))) ↔ ( 𝑌) ⊆ ( 𝑋)))
1913, 18sylibd 239 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) → ( 𝑌) ⊆ ( 𝑋)))
20 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → 𝐾 ∈ HL)
213, 4polssatN 39895 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
22213adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( 𝑋) ⊆ 𝐴)
2322adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑋) ⊆ 𝐴)
24 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑌) ⊆ ( 𝑋))
253, 4polcon3N 39904 . . . 4 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
2620, 23, 24, 25syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
2726ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( 𝑌) ⊆ ( 𝑋) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))))
2819, 27impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) ↔ ( 𝑌) ⊆ ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  cfv 6499  Atomscatm 39249  HLchlt 39336  𝑃cpolN 39889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-psubsp 39490  df-pmap 39491  df-polarityN 39890
This theorem is referenced by:  paddunN  39914
  Copyright terms: Public domain W3C validator