Proof of Theorem 2polcon4bN
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) → 𝐾 ∈ HL) |
2 | | simp1 1135 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝐾 ∈ HL) |
3 | | 2polss.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | 2polss.p |
. . . . . . . . 9
⊢ ⊥ =
(⊥𝑃‘𝐾) |
5 | 3, 4 | polssatN 37922 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
6 | 5 | 3adant2 1130 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
7 | 3, 4 | polssatN 37922 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘𝑌) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑌)) ⊆ 𝐴) |
8 | 2, 6, 7 | syl2anc 584 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑌)) ⊆ 𝐴) |
9 | 8 | adantr 481 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) → ( ⊥ ‘( ⊥
‘𝑌)) ⊆ 𝐴) |
10 | | simpr 485 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) |
11 | 3, 4 | polcon3N 37931 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘( ⊥ ‘𝑌)) ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑌))) ⊆ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋)))) |
12 | 1, 9, 10, 11 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑌))) ⊆ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋)))) |
13 | 12 | ex 413 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑌))) ⊆ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))))) |
14 | 3, 4 | 3polN 37930 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑌))) = ( ⊥ ‘𝑌)) |
15 | 14 | 3adant2 1130 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑌))) = ( ⊥ ‘𝑌)) |
16 | 3, 4 | 3polN 37930 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑋)) |
17 | 16 | 3adant3 1131 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑋)) |
18 | 15, 17 | sseq12d 3954 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘( ⊥ ‘𝑌))) ⊆ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
19 | 13, 18 | sylibd 238 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
20 | | simpl1 1190 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) → 𝐾 ∈ HL) |
21 | 3, 4 | polssatN 37922 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
22 | 21 | 3adant3 1131 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
23 | 22 | adantr 481 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
24 | | simpr 485 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
25 | 3, 4 | polcon3N 37931 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘𝑋) ⊆ 𝐴 ∧ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) |
26 | 20, 23, 24, 25 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌))) |
27 | 26 | ex 413 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌)))) |
28 | 19, 27 | impbid 211 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘𝑋)) ⊆ ( ⊥
‘( ⊥ ‘𝑌)) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |