Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polcon4bN Structured version   Visualization version   GIF version

Theorem 2polcon4bN 37859
Description: Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polcon4bN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) ↔ ( 𝑌) ⊆ ( 𝑋)))

Proof of Theorem 2polcon4bN
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → 𝐾 ∈ HL)
2 simp1 1134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝐾 ∈ HL)
3 2polss.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
4 2polss.p . . . . . . . . 9 = (⊥𝑃𝐾)
53, 4polssatN 37849 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
653adant2 1129 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
73, 4polssatN 37849 . . . . . . 7 ((𝐾 ∈ HL ∧ ( 𝑌) ⊆ 𝐴) → ( ‘( 𝑌)) ⊆ 𝐴)
82, 6, 7syl2anc 583 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( 𝑌)) ⊆ 𝐴)
98adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( 𝑌)) ⊆ 𝐴)
10 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
113, 4polcon3N 37858 . . . . 5 ((𝐾 ∈ HL ∧ ( ‘( 𝑌)) ⊆ 𝐴 ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋))))
121, 9, 10, 11syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))) → ( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋))))
1312ex 412 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) → ( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋)))))
143, 43polN 37857 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( ‘( 𝑌))) = ( 𝑌))
15143adant2 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( ‘( 𝑌))) = ( 𝑌))
163, 43polN 37857 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( ‘( 𝑋))) = ( 𝑋))
17163adant3 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( ‘( 𝑋))) = ( 𝑋))
1815, 17sseq12d 3950 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( ‘( 𝑌))) ⊆ ( ‘( ‘( 𝑋))) ↔ ( 𝑌) ⊆ ( 𝑋)))
1913, 18sylibd 238 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) → ( 𝑌) ⊆ ( 𝑋)))
20 simpl1 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → 𝐾 ∈ HL)
213, 4polssatN 37849 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
22213adant3 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( 𝑋) ⊆ 𝐴)
2322adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑋) ⊆ 𝐴)
24 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑌) ⊆ ( 𝑋))
253, 4polcon3N 37858 . . . 4 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
2620, 23, 24, 25syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
2726ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( 𝑌) ⊆ ( 𝑋) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌))))
2819, 27impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) ↔ ( 𝑌) ⊆ ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Atomscatm 37204  HLchlt 37291  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-polarityN 37844
This theorem is referenced by:  paddunN  37868
  Copyright terms: Public domain W3C validator