Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon2N Structured version   Visualization version   GIF version

Theorem polcon2N 39958
Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polcon2N ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))

Proof of Theorem polcon2N
StepHypRef Expression
1 2polss.a . . . 4 𝐴 = (Atoms‘𝐾)
2 2polss.p . . . 4 = (⊥𝑃𝐾)
31, 22polssN 39954 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴) → 𝑌 ⊆ ( ‘( 𝑌)))
433adant3 1132 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( ‘( 𝑌)))
51, 2polssatN 39947 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
653adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
71, 2polcon3N 39956 . . 3 ((𝐾 ∈ HL ∧ ( 𝑌) ⊆ 𝐴𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) ⊆ ( 𝑋))
86, 7syld3an2 1413 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) ⊆ ( 𝑋))
94, 8sstrd 3940 1 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wss 3897  cfv 6476  Atomscatm 39302  HLchlt 39389  𝑃cpolN 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-psubsp 39542  df-pmap 39543  df-polarityN 39942
This theorem is referenced by:  polcon2bN  39959  osumcllem3N  39997
  Copyright terms: Public domain W3C validator