Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polcon2N | Structured version Visualization version GIF version |
Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polcon2N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2polss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
3 | 1, 2 | 2polssN 37525 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → 𝑌 ⊆ ( ⊥ ‘( ⊥ ‘𝑌))) |
4 | 3 | 3adant3 1129 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘( ⊥ ‘𝑌))) |
5 | 1, 2 | polssatN 37518 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
6 | 5 | 3adant3 1129 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
7 | 1, 2 | polcon3N 37527 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑌) ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) ⊆ ( ⊥ ‘𝑋)) |
8 | 6, 7 | syld3an2 1408 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) ⊆ ( ⊥ ‘𝑋)) |
9 | 4, 8 | sstrd 3904 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 ‘cfv 6340 Atomscatm 36873 HLchlt 36960 ⊥𝑃cpolN 37512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-riotaBAD 36563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-undef 7955 df-proset 17617 df-poset 17635 df-plt 17647 df-lub 17663 df-glb 17664 df-join 17665 df-meet 17666 df-p0 17728 df-p1 17729 df-lat 17735 df-clat 17797 df-oposet 36786 df-ol 36788 df-oml 36789 df-covers 36876 df-ats 36877 df-atl 36908 df-cvlat 36932 df-hlat 36961 df-psubsp 37113 df-pmap 37114 df-polarityN 37513 |
This theorem is referenced by: polcon2bN 37530 osumcllem3N 37568 |
Copyright terms: Public domain | W3C validator |