Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon2N Structured version   Visualization version   GIF version

Theorem polcon2N 40091
Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polcon2N ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))

Proof of Theorem polcon2N
StepHypRef Expression
1 2polss.a . . . 4 𝐴 = (Atoms‘𝐾)
2 2polss.p . . . 4 = (⊥𝑃𝐾)
31, 22polssN 40087 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴) → 𝑌 ⊆ ( ‘( 𝑌)))
433adant3 1132 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( ‘( 𝑌)))
51, 2polssatN 40080 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
653adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
71, 2polcon3N 40089 . . 3 ((𝐾 ∈ HL ∧ ( 𝑌) ⊆ 𝐴𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) ⊆ ( 𝑋))
86, 7syld3an2 1413 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) ⊆ ( 𝑋))
94, 8sstrd 3941 1 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wss 3898  cfv 6489  Atomscatm 39435  HLchlt 39522  𝑃cpolN 40074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-psubsp 39675  df-pmap 39676  df-polarityN 40075
This theorem is referenced by:  polcon2bN  40092  osumcllem3N  40130
  Copyright terms: Public domain W3C validator