Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico2 Structured version   Visualization version   GIF version

Theorem uzinico2 41830
Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzinico2.1 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
uzinico2 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))

Proof of Theorem uzinico2
StepHypRef Expression
1 inass 4196 . . . 4 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞)))
21a1i 11 . . 3 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))))
3 incom 4178 . . . . 5 ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀))
43a1i 11 . . . 4 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)))
5 uzssz 12258 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
65a1i 11 . . . . . . . 8 (𝜑 → (ℤ𝑀) ⊆ ℤ)
7 uzinico2.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
86, 7sseldd 3968 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
9 eqid 2821 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
108, 9uzinico 41828 . . . . . 6 (𝜑 → (ℤ𝑁) = (ℤ ∩ (𝑁[,)+∞)))
1110eqcomd 2827 . . . . 5 (𝜑 → (ℤ ∩ (𝑁[,)+∞)) = (ℤ𝑁))
1211ineq1d 4188 . . . 4 (𝜑 → ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)) = ((ℤ𝑁) ∩ (ℤ𝑀)))
137uzssd 41673 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
14 df-ss 3952 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
1513, 14sylib 220 . . . 4 (𝜑 → ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
164, 12, 153eqtrd 2860 . . 3 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = (ℤ𝑁))
17 uzssz 12258 . . . . . 6 (ℤ𝑁) ⊆ ℤ
18 df-ss 3952 . . . . . 6 ((ℤ𝑁) ⊆ ℤ ↔ ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
1917, 18mpbi 232 . . . . 5 ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁)
2019a1i 11 . . . 4 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
2120eqcomd 2827 . . 3 (𝜑 → (ℤ𝑁) = ((ℤ𝑁) ∩ ℤ))
222, 16, 213eqtrrd 2861 . 2 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)))
23 df-ss 3952 . . . . 5 ((ℤ𝑀) ⊆ ℤ ↔ ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀))
245, 23mpbi 232 . . . 4 ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀)
2524ineq1i 4185 . . 3 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞))
2625a1i 11 . 2 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
2722, 20, 263eqtr3d 2864 1 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cin 3935  wss 3936  cfv 6350  (class class class)co 7150  +∞cpnf 10666  cz 11975  cuz 12237  [,)cico 12734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-neg 10867  df-z 11976  df-uz 12238  df-ico 12738
This theorem is referenced by:  uzinico3  41831  limsupvaluz  41981
  Copyright terms: Public domain W3C validator