Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico2 Structured version   Visualization version   GIF version

Theorem uzinico2 45580
Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzinico2.1 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
uzinico2 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))

Proof of Theorem uzinico2
StepHypRef Expression
1 inass 4176 . . . 4 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞)))
21a1i 11 . . 3 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))))
3 incom 4157 . . . . 5 ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀))
43a1i 11 . . . 4 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)))
5 uzssz 12745 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
65a1i 11 . . . . . . . 8 (𝜑 → (ℤ𝑀) ⊆ ℤ)
7 uzinico2.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
86, 7sseldd 3933 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
9 eqid 2730 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
108, 9uzinico 45578 . . . . . 6 (𝜑 → (ℤ𝑁) = (ℤ ∩ (𝑁[,)+∞)))
1110eqcomd 2736 . . . . 5 (𝜑 → (ℤ ∩ (𝑁[,)+∞)) = (ℤ𝑁))
1211ineq1d 4167 . . . 4 (𝜑 → ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)) = ((ℤ𝑁) ∩ (ℤ𝑀)))
137uzssd 45425 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
14 dfss2 3918 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
1513, 14sylib 218 . . . 4 (𝜑 → ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
164, 12, 153eqtrd 2769 . . 3 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = (ℤ𝑁))
17 uzssz 12745 . . . . . 6 (ℤ𝑁) ⊆ ℤ
18 dfss2 3918 . . . . . 6 ((ℤ𝑁) ⊆ ℤ ↔ ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
1917, 18mpbi 230 . . . . 5 ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁)
2019a1i 11 . . . 4 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
2120eqcomd 2736 . . 3 (𝜑 → (ℤ𝑁) = ((ℤ𝑁) ∩ ℤ))
222, 16, 213eqtrrd 2770 . 2 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)))
23 dfss2 3918 . . . . 5 ((ℤ𝑀) ⊆ ℤ ↔ ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀))
245, 23mpbi 230 . . . 4 ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀)
2524ineq1i 4164 . . 3 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞))
2625a1i 11 . 2 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
2722, 20, 263eqtr3d 2773 1 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cin 3899  wss 3900  cfv 6477  (class class class)co 7341  +∞cpnf 11135  cz 12460  cuz 12724  [,)cico 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-neg 11339  df-z 12461  df-uz 12725  df-ico 13243
This theorem is referenced by:  uzinico3  45581  limsupvaluz  45725
  Copyright terms: Public domain W3C validator