Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico2 Structured version   Visualization version   GIF version

Theorem uzinico2 45666
Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzinico2.1 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
uzinico2 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))

Proof of Theorem uzinico2
StepHypRef Expression
1 inass 4177 . . . 4 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞)))
21a1i 11 . . 3 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))))
3 incom 4158 . . . . 5 ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀))
43a1i 11 . . . 4 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)))
5 uzssz 12759 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
65a1i 11 . . . . . . . 8 (𝜑 → (ℤ𝑀) ⊆ ℤ)
7 uzinico2.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
86, 7sseldd 3930 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
9 eqid 2731 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
108, 9uzinico 45664 . . . . . 6 (𝜑 → (ℤ𝑁) = (ℤ ∩ (𝑁[,)+∞)))
1110eqcomd 2737 . . . . 5 (𝜑 → (ℤ ∩ (𝑁[,)+∞)) = (ℤ𝑁))
1211ineq1d 4168 . . . 4 (𝜑 → ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)) = ((ℤ𝑁) ∩ (ℤ𝑀)))
137uzssd 45511 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
14 dfss2 3915 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
1513, 14sylib 218 . . . 4 (𝜑 → ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
164, 12, 153eqtrd 2770 . . 3 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = (ℤ𝑁))
17 uzssz 12759 . . . . . 6 (ℤ𝑁) ⊆ ℤ
18 dfss2 3915 . . . . . 6 ((ℤ𝑁) ⊆ ℤ ↔ ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
1917, 18mpbi 230 . . . . 5 ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁)
2019a1i 11 . . . 4 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
2120eqcomd 2737 . . 3 (𝜑 → (ℤ𝑁) = ((ℤ𝑁) ∩ ℤ))
222, 16, 213eqtrrd 2771 . 2 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)))
23 dfss2 3915 . . . . 5 ((ℤ𝑀) ⊆ ℤ ↔ ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀))
245, 23mpbi 230 . . . 4 ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀)
2524ineq1i 4165 . . 3 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞))
2625a1i 11 . 2 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
2722, 20, 263eqtr3d 2774 1 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3896  wss 3897  cfv 6487  (class class class)co 7352  +∞cpnf 11149  cz 12474  cuz 12738  [,)cico 13253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-pre-lttri 11086  ax-pre-lttrn 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-neg 11353  df-z 12475  df-uz 12739  df-ico 13257
This theorem is referenced by:  uzinico3  45667  limsupvaluz  45811
  Copyright terms: Public domain W3C validator