| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzinico2 | Structured version Visualization version GIF version | ||
| Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| uzinico2.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| Ref | Expression |
|---|---|
| uzinico2 | ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4191 | . . . 4 ⊢ (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞)))) |
| 3 | incom 4172 | . . . . 5 ⊢ ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ≥‘𝑀)) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ≥‘𝑀))) |
| 5 | uzssz 12814 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘𝑀) ⊆ ℤ) |
| 7 | uzinico2.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 8 | 6, 7 | sseldd 3947 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 10 | 8, 9 | uzinico 45557 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) = (ℤ ∩ (𝑁[,)+∞))) |
| 11 | 10 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (ℤ ∩ (𝑁[,)+∞)) = (ℤ≥‘𝑁)) |
| 12 | 11 | ineq1d 4182 | . . . 4 ⊢ (𝜑 → ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ≥‘𝑀)) = ((ℤ≥‘𝑁) ∩ (ℤ≥‘𝑀))) |
| 13 | 7 | uzssd 45404 | . . . . 5 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| 14 | dfss2 3932 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀) ↔ ((ℤ≥‘𝑁) ∩ (ℤ≥‘𝑀)) = (ℤ≥‘𝑁)) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝜑 → ((ℤ≥‘𝑁) ∩ (ℤ≥‘𝑀)) = (ℤ≥‘𝑁)) |
| 16 | 4, 12, 15 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = (ℤ≥‘𝑁)) |
| 17 | uzssz 12814 | . . . . . 6 ⊢ (ℤ≥‘𝑁) ⊆ ℤ | |
| 18 | dfss2 3932 | . . . . . 6 ⊢ ((ℤ≥‘𝑁) ⊆ ℤ ↔ ((ℤ≥‘𝑁) ∩ ℤ) = (ℤ≥‘𝑁)) | |
| 19 | 17, 18 | mpbi 230 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ∩ ℤ) = (ℤ≥‘𝑁) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ((ℤ≥‘𝑁) ∩ ℤ) = (ℤ≥‘𝑁)) |
| 21 | 20 | eqcomd 2735 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑁) ∩ ℤ)) |
| 22 | 2, 16, 21 | 3eqtrrd 2769 | . 2 ⊢ (𝜑 → ((ℤ≥‘𝑁) ∩ ℤ) = (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞))) |
| 23 | dfss2 3932 | . . . . 5 ⊢ ((ℤ≥‘𝑀) ⊆ ℤ ↔ ((ℤ≥‘𝑀) ∩ ℤ) = (ℤ≥‘𝑀)) | |
| 24 | 5, 23 | mpbi 230 | . . . 4 ⊢ ((ℤ≥‘𝑀) ∩ ℤ) = (ℤ≥‘𝑀) |
| 25 | 24 | ineq1i 4179 | . . 3 ⊢ (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞)) |
| 26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) |
| 27 | 22, 20, 26 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 +∞cpnf 11205 ℤcz 12529 ℤ≥cuz 12793 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 df-ico 13312 |
| This theorem is referenced by: uzinico3 45560 limsupvaluz 45706 |
| Copyright terms: Public domain | W3C validator |