Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico2 Structured version   Visualization version   GIF version

Theorem uzinico2 45590
Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzinico2.1 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
uzinico2 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))

Proof of Theorem uzinico2
StepHypRef Expression
1 inass 4203 . . . 4 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞)))
21a1i 11 . . 3 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))))
3 incom 4184 . . . . 5 ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀))
43a1i 11 . . . 4 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)))
5 uzssz 12873 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
65a1i 11 . . . . . . . 8 (𝜑 → (ℤ𝑀) ⊆ ℤ)
7 uzinico2.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
86, 7sseldd 3959 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
9 eqid 2735 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
108, 9uzinico 45588 . . . . . 6 (𝜑 → (ℤ𝑁) = (ℤ ∩ (𝑁[,)+∞)))
1110eqcomd 2741 . . . . 5 (𝜑 → (ℤ ∩ (𝑁[,)+∞)) = (ℤ𝑁))
1211ineq1d 4194 . . . 4 (𝜑 → ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ𝑀)) = ((ℤ𝑁) ∩ (ℤ𝑀)))
137uzssd 45435 . . . . 5 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
14 dfss2 3944 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
1513, 14sylib 218 . . . 4 (𝜑 → ((ℤ𝑁) ∩ (ℤ𝑀)) = (ℤ𝑁))
164, 12, 153eqtrd 2774 . . 3 (𝜑 → ((ℤ𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = (ℤ𝑁))
17 uzssz 12873 . . . . . 6 (ℤ𝑁) ⊆ ℤ
18 dfss2 3944 . . . . . 6 ((ℤ𝑁) ⊆ ℤ ↔ ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
1917, 18mpbi 230 . . . . 5 ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁)
2019a1i 11 . . . 4 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (ℤ𝑁))
2120eqcomd 2741 . . 3 (𝜑 → (ℤ𝑁) = ((ℤ𝑁) ∩ ℤ))
222, 16, 213eqtrrd 2775 . 2 (𝜑 → ((ℤ𝑁) ∩ ℤ) = (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)))
23 dfss2 3944 . . . . 5 ((ℤ𝑀) ⊆ ℤ ↔ ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀))
245, 23mpbi 230 . . . 4 ((ℤ𝑀) ∩ ℤ) = (ℤ𝑀)
2524ineq1i 4191 . . 3 (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞))
2625a1i 11 . 2 (𝜑 → (((ℤ𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
2722, 20, 263eqtr3d 2778 1 (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cin 3925  wss 3926  cfv 6531  (class class class)co 7405  +∞cpnf 11266  cz 12588  cuz 12852  [,)cico 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853  df-ico 13368
This theorem is referenced by:  uzinico3  45591  limsupvaluz  45737
  Copyright terms: Public domain W3C validator