Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzinico2 | Structured version Visualization version GIF version |
Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzinico2.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
Ref | Expression |
---|---|
uzinico2 | ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4153 | . . . 4 ⊢ (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞)))) |
3 | incom 4135 | . . . . 5 ⊢ ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ≥‘𝑀)) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ≥‘𝑀))) |
5 | uzssz 12603 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘𝑀) ⊆ ℤ) |
7 | uzinico2.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
8 | 6, 7 | sseldd 3922 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
9 | eqid 2738 | . . . . . . 7 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
10 | 8, 9 | uzinico 43098 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) = (ℤ ∩ (𝑁[,)+∞))) |
11 | 10 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (ℤ ∩ (𝑁[,)+∞)) = (ℤ≥‘𝑁)) |
12 | 11 | ineq1d 4145 | . . . 4 ⊢ (𝜑 → ((ℤ ∩ (𝑁[,)+∞)) ∩ (ℤ≥‘𝑀)) = ((ℤ≥‘𝑁) ∩ (ℤ≥‘𝑀))) |
13 | 7 | uzssd 42948 | . . . . 5 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
14 | df-ss 3904 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀) ↔ ((ℤ≥‘𝑁) ∩ (ℤ≥‘𝑀)) = (ℤ≥‘𝑁)) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝜑 → ((ℤ≥‘𝑁) ∩ (ℤ≥‘𝑀)) = (ℤ≥‘𝑁)) |
16 | 4, 12, 15 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → ((ℤ≥‘𝑀) ∩ (ℤ ∩ (𝑁[,)+∞))) = (ℤ≥‘𝑁)) |
17 | uzssz 12603 | . . . . . 6 ⊢ (ℤ≥‘𝑁) ⊆ ℤ | |
18 | df-ss 3904 | . . . . . 6 ⊢ ((ℤ≥‘𝑁) ⊆ ℤ ↔ ((ℤ≥‘𝑁) ∩ ℤ) = (ℤ≥‘𝑁)) | |
19 | 17, 18 | mpbi 229 | . . . . 5 ⊢ ((ℤ≥‘𝑁) ∩ ℤ) = (ℤ≥‘𝑁) |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ((ℤ≥‘𝑁) ∩ ℤ) = (ℤ≥‘𝑁)) |
21 | 20 | eqcomd 2744 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑁) ∩ ℤ)) |
22 | 2, 16, 21 | 3eqtrrd 2783 | . 2 ⊢ (𝜑 → ((ℤ≥‘𝑁) ∩ ℤ) = (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞))) |
23 | df-ss 3904 | . . . . 5 ⊢ ((ℤ≥‘𝑀) ⊆ ℤ ↔ ((ℤ≥‘𝑀) ∩ ℤ) = (ℤ≥‘𝑀)) | |
24 | 5, 23 | mpbi 229 | . . . 4 ⊢ ((ℤ≥‘𝑀) ∩ ℤ) = (ℤ≥‘𝑀) |
25 | 24 | ineq1i 4142 | . . 3 ⊢ (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞)) |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (((ℤ≥‘𝑀) ∩ ℤ) ∩ (𝑁[,)+∞)) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) |
27 | 22, 20, 26 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 +∞cpnf 11006 ℤcz 12319 ℤ≥cuz 12582 [,)cico 13081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 df-ico 13085 |
This theorem is referenced by: uzinico3 43101 limsupvaluz 43249 |
Copyright terms: Public domain | W3C validator |