Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfle2d | Structured version Visualization version GIF version |
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
issmfle2d.a | ⊢ Ⅎ𝑎𝜑 |
issmfle2d.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfle2d.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
issmfle2d.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
issmfle2d.l | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) |
Ref | Expression |
---|---|
issmfle2d | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfle2d.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | issmfle2d.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | issmfle2d.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
4 | issmfle2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ) |
6 | rexr 11123 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
7 | 6 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
8 | 5, 7 | preimaiocmnf 43487 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
9 | issmfle2d.l | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) | |
10 | 8, 9 | eqeltrrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
11 | 1, 2, 3, 4, 10 | issmfled 44684 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1784 ∈ wcel 2105 {crab 3403 ⊆ wss 3898 ∪ cuni 4853 class class class wbr 5093 ◡ccnv 5620 “ cima 5624 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ℝcr 10972 -∞cmnf 11109 ℝ*cxr 11110 ≤ cle 11112 (,]cioc 13182 ↾t crest 17229 SAlgcsalg 44237 SMblFncsmblfn 44622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cc 10293 ax-ac2 10321 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-pm 8690 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-sup 9300 df-inf 9301 df-card 9797 df-acn 9800 df-ac 9974 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-n0 12336 df-z 12422 df-uz 12685 df-q 12791 df-rp 12833 df-ioo 13185 df-ioc 13186 df-ico 13187 df-fl 13614 df-rest 17231 df-salg 44238 df-smblfn 44623 |
This theorem is referenced by: smfsuplem3 44740 |
Copyright terms: Public domain | W3C validator |