Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfle2d Structured version   Visualization version   GIF version

Theorem issmfle2d 43090
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
issmfle2d.a 𝑎𝜑
issmfle2d.s (𝜑𝑆 ∈ SAlg)
issmfle2d.d (𝜑𝐷 𝑆)
issmfle2d.f (𝜑𝐹:𝐷⟶ℝ)
issmfle2d.l ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfle2d (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐹,𝑎   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐷(𝑎)

Proof of Theorem issmfle2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 issmfle2d.a . 2 𝑎𝜑
2 issmfle2d.s . 2 (𝜑𝑆 ∈ SAlg)
3 issmfle2d.d . 2 (𝜑𝐷 𝑆)
4 issmfle2d.f . 2 (𝜑𝐹:𝐷⟶ℝ)
54adantr 483 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
6 rexr 10689 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
76adantl 484 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
85, 7preimaiocmnf 41844 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,]𝑎)) = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
9 issmfle2d.l . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
108, 9eqeltrrd 2916 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
111, 2, 3, 4, 10issmfled 43041 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wnf 1784  wcel 2114  {crab 3144  wss 3938   cuni 4840   class class class wbr 5068  ccnv 5556  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  -∞cmnf 10675  *cxr 10676  cle 10678  (,]cioc 12742  t crest 16696  SAlgcsalg 42600  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ioc 12746  df-ico 12747  df-fl 13165  df-rest 16698  df-salg 42601  df-smblfn 42985
This theorem is referenced by:  smfsuplem3  43094
  Copyright terms: Public domain W3C validator