Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocd | Structured version Visualization version GIF version |
Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliocd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliocd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliocd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
eliocd.altc | ⊢ (𝜑 → 𝐴 < 𝐶) |
eliocd.cleb | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliocd | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliocd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
2 | eliocd.altc | . 2 ⊢ (𝜑 → 𝐴 < 𝐶) | |
3 | eliocd.cleb | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
4 | eliocd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | eliocd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | elioc1 13222 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5092 (class class class)co 7337 ℝ*cxr 11109 < clt 11110 ≤ cle 11111 (,]cioc 13181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-xr 11114 df-ioc 13185 |
This theorem is referenced by: iocopn 43402 eliccelioc 43403 iccdificc 43421 ressiocsup 43436 iooiinioc 43438 preimaiocmnf 43443 xlimpnfvlem2 43722 ioccncflimc 43770 fourierdlem41 44033 fourierdlem46 44037 fourierdlem48 44039 fourierdlem49 44040 fourierdlem51 44042 fourierswlem 44115 smfsuplem1 44694 |
Copyright terms: Public domain | W3C validator |