Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocd Structured version   Visualization version   GIF version

Theorem eliocd 44766
Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliocd.a (𝜑𝐴 ∈ ℝ*)
eliocd.b (𝜑𝐵 ∈ ℝ*)
eliocd.c (𝜑𝐶 ∈ ℝ*)
eliocd.altc (𝜑𝐴 < 𝐶)
eliocd.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
eliocd (𝜑𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem eliocd
StepHypRef Expression
1 eliocd.c . 2 (𝜑𝐶 ∈ ℝ*)
2 eliocd.altc . 2 (𝜑𝐴 < 𝐶)
3 eliocd.cleb . 2 (𝜑𝐶𝐵)
4 eliocd.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliocd.b . . 3 (𝜑𝐵 ∈ ℝ*)
6 elioc1 13367 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
74, 5, 6syl2anc 583 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1339 1 (𝜑𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084  wcel 2098   class class class wbr 5139  (class class class)co 7402  *cxr 11246   < clt 11247  cle 11248  (,]cioc 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-xr 11251  df-ioc 13330
This theorem is referenced by:  iocopn  44779  eliccelioc  44780  iccdificc  44798  ressiocsup  44813  iooiinioc  44815  preimaiocmnf  44820  xlimpnfvlem2  45099  ioccncflimc  45147  fourierdlem41  45410  fourierdlem46  45414  fourierdlem48  45416  fourierdlem49  45417  fourierdlem51  45419  fourierswlem  45492  smfsuplem1  46073
  Copyright terms: Public domain W3C validator