Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocd Structured version   Visualization version   GIF version

Theorem eliocd 44210
Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliocd.a (𝜑𝐴 ∈ ℝ*)
eliocd.b (𝜑𝐵 ∈ ℝ*)
eliocd.c (𝜑𝐶 ∈ ℝ*)
eliocd.altc (𝜑𝐴 < 𝐶)
eliocd.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
eliocd (𝜑𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem eliocd
StepHypRef Expression
1 eliocd.c . 2 (𝜑𝐶 ∈ ℝ*)
2 eliocd.altc . 2 (𝜑𝐴 < 𝐶)
3 eliocd.cleb . 2 (𝜑𝐶𝐵)
4 eliocd.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliocd.b . . 3 (𝜑𝐵 ∈ ℝ*)
6 elioc1 13365 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1342 1 (𝜑𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087  wcel 2106   class class class wbr 5148  (class class class)co 7408  *cxr 11246   < clt 11247  cle 11248  (,]cioc 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-xr 11251  df-ioc 13328
This theorem is referenced by:  iocopn  44223  eliccelioc  44224  iccdificc  44242  ressiocsup  44257  iooiinioc  44259  preimaiocmnf  44264  xlimpnfvlem2  44543  ioccncflimc  44591  fourierdlem41  44854  fourierdlem46  44858  fourierdlem48  44860  fourierdlem49  44861  fourierdlem51  44863  fourierswlem  44936  smfsuplem1  45517
  Copyright terms: Public domain W3C validator