| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocd | Structured version Visualization version GIF version | ||
| Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliocd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| eliocd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| eliocd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| eliocd.altc | ⊢ (𝜑 → 𝐴 < 𝐶) |
| eliocd.cleb | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| eliocd | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliocd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | eliocd.altc | . 2 ⊢ (𝜑 → 𝐴 < 𝐶) | |
| 3 | eliocd.cleb | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 4 | eliocd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | eliocd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elioc1 13297 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝ*cxr 11155 < clt 11156 ≤ cle 11157 (,]cioc 13256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-xr 11160 df-ioc 13260 |
| This theorem is referenced by: iocopn 45634 eliccelioc 45635 iccdificc 45653 ressiocsup 45668 iooiinioc 45670 preimaiocmnf 45674 xlimpnfvlem2 45949 ioccncflimc 45997 fourierdlem41 46260 fourierdlem46 46264 fourierdlem48 46266 fourierdlem49 46267 fourierdlem51 46269 fourierswlem 46342 smfsuplem1 46923 |
| Copyright terms: Public domain | W3C validator |