| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocd | Structured version Visualization version GIF version | ||
| Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliocd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| eliocd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| eliocd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| eliocd.altc | ⊢ (𝜑 → 𝐴 < 𝐶) |
| eliocd.cleb | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| eliocd | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliocd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | eliocd.altc | . 2 ⊢ (𝜑 → 𝐴 < 𝐶) | |
| 3 | eliocd.cleb | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 4 | eliocd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | eliocd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elioc1 13348 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 (,]cioc 13307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-xr 11212 df-ioc 13311 |
| This theorem is referenced by: iocopn 45518 eliccelioc 45519 iccdificc 45537 ressiocsup 45552 iooiinioc 45554 preimaiocmnf 45558 xlimpnfvlem2 45835 ioccncflimc 45883 fourierdlem41 46146 fourierdlem46 46150 fourierdlem48 46152 fourierdlem49 46153 fourierdlem51 46155 fourierswlem 46228 smfsuplem1 46809 |
| Copyright terms: Public domain | W3C validator |