Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocd Structured version   Visualization version   GIF version

Theorem eliocd 45621
Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliocd.a (𝜑𝐴 ∈ ℝ*)
eliocd.b (𝜑𝐵 ∈ ℝ*)
eliocd.c (𝜑𝐶 ∈ ℝ*)
eliocd.altc (𝜑𝐴 < 𝐶)
eliocd.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
eliocd (𝜑𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem eliocd
StepHypRef Expression
1 eliocd.c . 2 (𝜑𝐶 ∈ ℝ*)
2 eliocd.altc . 2 (𝜑𝐴 < 𝐶)
3 eliocd.cleb . 2 (𝜑𝐶𝐵)
4 eliocd.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliocd.b . . 3 (𝜑𝐵 ∈ ℝ*)
6 elioc1 13297 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1343 1 (𝜑𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2113   class class class wbr 5095  (class class class)co 7355  *cxr 11155   < clt 11156  cle 11157  (,]cioc 13256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-xr 11160  df-ioc 13260
This theorem is referenced by:  iocopn  45634  eliccelioc  45635  iccdificc  45653  ressiocsup  45668  iooiinioc  45670  preimaiocmnf  45674  xlimpnfvlem2  45949  ioccncflimc  45997  fourierdlem41  46260  fourierdlem46  46264  fourierdlem48  46266  fourierdlem49  46267  fourierdlem51  46269  fourierswlem  46342  smfsuplem1  46923
  Copyright terms: Public domain W3C validator