| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocd | Structured version Visualization version GIF version | ||
| Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliocd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| eliocd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| eliocd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| eliocd.altc | ⊢ (𝜑 → 𝐴 < 𝐶) |
| eliocd.cleb | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| eliocd | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliocd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | eliocd.altc | . 2 ⊢ (𝜑 → 𝐴 < 𝐶) | |
| 3 | eliocd.cleb | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 4 | eliocd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | eliocd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elioc1 13279 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 (,]cioc 13238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-xr 11142 df-ioc 13242 |
| This theorem is referenced by: iocopn 45539 eliccelioc 45540 iccdificc 45558 ressiocsup 45573 iooiinioc 45575 preimaiocmnf 45579 xlimpnfvlem2 45854 ioccncflimc 45902 fourierdlem41 46165 fourierdlem46 46169 fourierdlem48 46171 fourierdlem49 46172 fourierdlem51 46174 fourierswlem 46247 smfsuplem1 46828 |
| Copyright terms: Public domain | W3C validator |