Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocd Structured version   Visualization version   GIF version

Theorem eliocd 45526
Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliocd.a (𝜑𝐴 ∈ ℝ*)
eliocd.b (𝜑𝐵 ∈ ℝ*)
eliocd.c (𝜑𝐶 ∈ ℝ*)
eliocd.altc (𝜑𝐴 < 𝐶)
eliocd.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
eliocd (𝜑𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem eliocd
StepHypRef Expression
1 eliocd.c . 2 (𝜑𝐶 ∈ ℝ*)
2 eliocd.altc . 2 (𝜑𝐴 < 𝐶)
3 eliocd.cleb . 2 (𝜑𝐶𝐵)
4 eliocd.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliocd.b . . 3 (𝜑𝐵 ∈ ℝ*)
6 elioc1 13279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1343 1 (𝜑𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2110   class class class wbr 5089  (class class class)co 7341  *cxr 11137   < clt 11138  cle 11139  (,]cioc 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-xr 11142  df-ioc 13242
This theorem is referenced by:  iocopn  45539  eliccelioc  45540  iccdificc  45558  ressiocsup  45573  iooiinioc  45575  preimaiocmnf  45579  xlimpnfvlem2  45854  ioccncflimc  45902  fourierdlem41  46165  fourierdlem46  46169  fourierdlem48  46171  fourierdlem49  46172  fourierdlem51  46174  fourierswlem  46247  smfsuplem1  46828
  Copyright terms: Public domain W3C validator