Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn02 | Structured version Visualization version GIF version |
Description: For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovn02 | ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 {∅} ↦ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . 3 ⊢ ⊤ | |
2 | 0fin 8992 | . . . . . 6 ⊢ ∅ ∈ Fin | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (⊤ → ∅ ∈ Fin) |
4 | 3 | ovnf 44151 | . . . 4 ⊢ (⊤ → (voln*‘∅):𝒫 (ℝ ↑m ∅)⟶(0[,]+∞)) |
5 | 4 | feqmptd 6869 | . . 3 ⊢ (⊤ → (voln*‘∅) = (𝑥 ∈ 𝒫 (ℝ ↑m ∅) ↦ ((voln*‘∅)‘𝑥))) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 (ℝ ↑m ∅) ↦ ((voln*‘∅)‘𝑥)) |
7 | reex 11008 | . . . . 5 ⊢ ℝ ∈ V | |
8 | mapdm0 8661 | . . . . 5 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (ℝ ↑m ∅) = {∅} |
10 | 9 | pweqi 4555 | . . 3 ⊢ 𝒫 (ℝ ↑m ∅) = 𝒫 {∅} |
11 | mpteq1 5174 | . . 3 ⊢ (𝒫 (ℝ ↑m ∅) = 𝒫 {∅} → (𝑥 ∈ 𝒫 (ℝ ↑m ∅) ↦ ((voln*‘∅)‘𝑥)) = (𝑥 ∈ 𝒫 {∅} ↦ ((voln*‘∅)‘𝑥))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ 𝒫 (ℝ ↑m ∅) ↦ ((voln*‘∅)‘𝑥)) = (𝑥 ∈ 𝒫 {∅} ↦ ((voln*‘∅)‘𝑥)) |
13 | elpwi 4546 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 {∅} → 𝑥 ⊆ {∅}) | |
14 | 9 | eqcomi 2745 | . . . . . 6 ⊢ {∅} = (ℝ ↑m ∅) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 {∅} → {∅} = (ℝ ↑m ∅)) |
16 | 13, 15 | sseqtrd 3966 | . . . 4 ⊢ (𝑥 ∈ 𝒫 {∅} → 𝑥 ⊆ (ℝ ↑m ∅)) |
17 | 16 | ovn0val 44138 | . . 3 ⊢ (𝑥 ∈ 𝒫 {∅} → ((voln*‘∅)‘𝑥) = 0) |
18 | 17 | mpteq2ia 5184 | . 2 ⊢ (𝑥 ∈ 𝒫 {∅} ↦ ((voln*‘∅)‘𝑥)) = (𝑥 ∈ 𝒫 {∅} ↦ 0) |
19 | 6, 12, 18 | 3eqtri 2768 | 1 ⊢ (voln*‘∅) = (𝑥 ∈ 𝒫 {∅} ↦ 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 𝒫 cpw 4539 {csn 4565 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Fincfn 8764 ℝcr 10916 0cc0 10917 +∞cpnf 11052 [,]cicc 13128 voln*covoln 44124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-rlim 15243 df-sum 15443 df-prod 15661 df-rest 17178 df-topgen 17199 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-top 22088 df-topon 22105 df-bases 22141 df-cmp 22583 df-ovol 24673 df-vol 24674 df-sumge0 43951 df-ovoln 44125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |