Proof of Theorem lincresunit3lem2
Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod) |
2 | | lincresunit.e |
. . . . . . . . . 10
⊢ 𝐸 = (Base‘𝑅) |
3 | | lincresunit.r |
. . . . . . . . . . 11
⊢ 𝑅 = (Scalar‘𝑀) |
4 | 3 | fveq2i 6777 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
5 | 2, 4 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝐸 =
(Base‘(Scalar‘𝑀)) |
6 | 5 | oveq1i 7285 |
. . . . . . . 8
⊢ (𝐸 ↑m 𝑆) =
((Base‘(Scalar‘𝑀)) ↑m 𝑆) |
7 | 6 | eleq2i 2830 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)) |
8 | 7 | biimpi 215 |
. . . . . 6
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)) |
9 | 8 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)) |
10 | 9 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑆)) |
11 | | difssd 4067 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ⊆ 𝑆) |
12 | | elmapssres 8655 |
. . . 4
⊢ ((𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑆) ∧ (𝑆 ∖ {𝑋}) ⊆ 𝑆) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋}))) |
13 | 10, 11, 12 | syl2anc 584 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋}))) |
14 | | elpwi 4542 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
15 | 14 | ssdifssd 4077 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
16 | | difexg 5251 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑋}) ∈ V) |
17 | | elpwg 4536 |
. . . . . . . 8
⊢ ((𝑆 ∖ {𝑋}) ∈ V → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))) |
18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
((𝑆 ∖ {𝑋}) ∈ 𝒫
(Base‘𝑀) ↔
(𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))) |
19 | 15, 18 | mpbird 256 |
. . . . . 6
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑋}) ∈ 𝒫
(Base‘𝑀)) |
20 | | lincresunit.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
21 | 20 | pweqi 4551 |
. . . . . 6
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
22 | 19, 21 | eleq2s 2857 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
23 | 22 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
24 | 23 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
25 | | lincval 45750 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠
‘𝑀)𝑧)))) |
26 | 1, 13, 24, 25 | syl3anc 1370 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠
‘𝑀)𝑧)))) |
27 | | simpll 764 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
28 | | simplr1 1214 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
29 | | simplr2 1215 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝑈) |
30 | | simpr 485 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ (𝑆 ∖ {𝑋})) |
31 | | lincresunit.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
32 | | lincresunit.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
33 | | lincresunit.z |
. . . . . . 7
⊢ 𝑍 = (0g‘𝑀) |
34 | | lincresunit.n |
. . . . . . 7
⊢ 𝑁 = (invg‘𝑅) |
35 | | lincresunit.i |
. . . . . . 7
⊢ 𝐼 = (invr‘𝑅) |
36 | | lincresunit.t |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
37 | | lincresunit.g |
. . . . . . 7
⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
38 | 20, 3, 2, 31, 32, 33, 34, 35, 36, 37 | lincresunit3lem1 45820 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
39 | 27, 28, 29, 30, 38 | syl13anc 1371 |
. . . . 5
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
40 | | fvres 6793 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹‘𝑧)) |
41 | 40 | adantl 482 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹‘𝑧)) |
42 | 41 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)) |
43 | 42 | oveq1d 7290 |
. . . . 5
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
44 | 39, 43 | eqtrd 2778 |
. . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
45 | 44 | mpteq2dva 5174 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠
‘𝑀)𝑧))) |
46 | 45 | oveq2d 7291 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠
‘𝑀)𝑧)))) |
47 | | eqid 2738 |
. . 3
⊢
(+g‘𝑀) = (+g‘𝑀) |
48 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
49 | | difexg 5251 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V) |
50 | 49 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
51 | 50 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V) |
52 | 3 | lmodfgrp 20132 |
. . . . . . 7
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
53 | 52 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Grp) |
54 | 53 | adantr 481 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ 𝐹 ∈ (𝐸 ↑m 𝑆)) → 𝑅 ∈ Grp) |
55 | | elmapi 8637 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) |
56 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸) |
57 | 56 | expcom 414 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑆 → (𝐹:𝑆⟶𝐸 → (𝐹‘𝑋) ∈ 𝐸)) |
58 | 57 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝐹:𝑆⟶𝐸 → (𝐹‘𝑋) ∈ 𝐸)) |
59 | 55, 58 | syl5com 31 |
. . . . . 6
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸)) |
60 | 59 | impcom 408 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ 𝐹 ∈ (𝐸 ↑m 𝑆)) → (𝐹‘𝑋) ∈ 𝐸) |
61 | 2, 34 | grpinvcl 18627 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝐹‘𝑋) ∈ 𝐸) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
62 | 54, 60, 61 | syl2anc 584 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ 𝐹 ∈ (𝐸 ↑m 𝑆)) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
63 | 62 | 3ad2antr1 1187 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
64 | 1 | adantr 481 |
. . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod) |
65 | 20, 3, 2, 31, 32, 33, 34, 35, 36, 37 | lincresunit1 45818 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
66 | 65 | 3adantr3 1170 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
67 | | elmapi 8637 |
. . . . . 6
⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) |
68 | | ffvelrn 6959 |
. . . . . . 7
⊢ ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺‘𝑧) ∈ 𝐸) |
69 | 68 | ex 413 |
. . . . . 6
⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺‘𝑧) ∈ 𝐸)) |
70 | 66, 67, 69 | 3syl 18 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺‘𝑧) ∈ 𝐸)) |
71 | 70 | imp 407 |
. . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺‘𝑧) ∈ 𝐸) |
72 | | elpwi 4542 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵) |
73 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝑆) |
74 | | ssel2 3916 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) |
75 | 74 | expcom 414 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → (𝑆 ⊆ 𝐵 → 𝑧 ∈ 𝐵)) |
76 | 73, 75 | syl 17 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ⊆ 𝐵 → 𝑧 ∈ 𝐵)) |
77 | 72, 76 | syl5com 31 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝐵)) |
78 | 77 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝐵)) |
79 | 78 | adantr 481 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝐵)) |
80 | 79 | imp 407 |
. . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵) |
81 | 20, 3, 48, 2 | lmodvscl 20140 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝐺‘𝑧) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵) → ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧) ∈ 𝐵) |
82 | 64, 71, 80, 81 | syl3anc 1370 |
. . 3
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧) ∈ 𝐵) |
83 | | simp2 1136 |
. . . . . 6
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ LMod) |
84 | 83, 23 | jca 512 |
. . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
85 | 84 | adantr 481 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
86 | 20, 3, 2, 31, 32, 33, 34, 35, 36, 37 | lincresunit2 45819 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) |
87 | 86, 32 | breqtrdi 5115 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp
(0g‘𝑅)) |
88 | 3, 2 | scmfsupp 45714 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g‘𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) finSupp (0g‘𝑀)) |
89 | 88, 33 | breqtrrdi 5116 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g‘𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) finSupp 𝑍) |
90 | 85, 66, 87, 89 | syl3anc 1370 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) finSupp 𝑍) |
91 | 20, 3, 2, 33, 47, 48, 1, 51, 63, 82, 90 | gsumvsmul 20187 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧))))) |
92 | 26, 46, 91 | 3eqtr2rd 2785 |
1
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) |