Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem2 Structured version   Visualization version   GIF version

Theorem lincresunit3lem2 43266
 Description: Lemma 2 for lincresunit3 43267. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠,𝐵   𝑧,𝐸   𝑧,𝐹   𝑧,𝐺   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑆   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍   0 ,𝑠,𝑧
Allowed substitution hints:   𝑅(𝑠)   · (𝑧)   𝐺(𝑠)   𝐼(𝑧)   𝑍(𝑠)

Proof of Theorem lincresunit3lem2
StepHypRef Expression
1 simpl2 1201 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincresunit.e . . . . . . . . . 10 𝐸 = (Base‘𝑅)
3 lincresunit.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
43fveq2i 6449 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2801 . . . . . . . . 9 𝐸 = (Base‘(Scalar‘𝑀))
65oveq1i 6932 . . . . . . . 8 (𝐸𝑚 𝑆) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)
76eleq2i 2850 . . . . . . 7 (𝐹 ∈ (𝐸𝑚 𝑆) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
87biimpi 208 . . . . . 6 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
983ad2ant1 1124 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
109adantl 475 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
11 difssd 3960 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
12 elmapssres 8165 . . . 4 ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆) ∧ (𝑆 ∖ {𝑋}) ⊆ 𝑆) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑋})))
1310, 11, 12syl2anc 579 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑋})))
14 elpwi 4388 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
1514ssdifssd 3970 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
16 difexg 5045 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
17 elpwg 4386 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1816, 17syl 17 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1915, 18mpbird 249 . . . . . 6 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
20 lincresunit.b . . . . . . 7 𝐵 = (Base‘𝑀)
2120pweqi 4382 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2219, 21eleq2s 2876 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
23223ad2ant1 1124 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
2423adantr 474 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
25 lincval 43195 . . 3 ((𝑀 ∈ LMod ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
261, 13, 24, 25syl3anc 1439 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
27 simpll 757 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
28 simplr1 1232 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝐹 ∈ (𝐸𝑚 𝑆))
29 simplr2 1234 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
30 simpr 479 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
31 lincresunit.u . . . . . . 7 𝑈 = (Unit‘𝑅)
32 lincresunit.0 . . . . . . 7 0 = (0g𝑅)
33 lincresunit.z . . . . . . 7 𝑍 = (0g𝑀)
34 lincresunit.n . . . . . . 7 𝑁 = (invg𝑅)
35 lincresunit.i . . . . . . 7 𝐼 = (invr𝑅)
36 lincresunit.t . . . . . . 7 · = (.r𝑅)
37 lincresunit.g . . . . . . 7 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3820, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit3lem1 43265 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
3927, 28, 29, 30, 38syl13anc 1440 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
40 fvres 6465 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4140adantl 475 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4241eqcomd 2783 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧))
4342oveq1d 6937 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑧)( ·𝑠𝑀)𝑧) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4439, 43eqtrd 2813 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4544mpteq2dva 4979 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧)))
4645oveq2d 6938 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
47 eqid 2777 . . 3 (+g𝑀) = (+g𝑀)
48 eqid 2777 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
49 difexg 5045 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
50493ad2ant1 1124 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
5150adantr 474 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
523lmodfgrp 19264 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
53523ad2ant2 1125 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
5453adantr 474 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸𝑚 𝑆)) → 𝑅 ∈ Grp)
55 elmapi 8162 . . . . . . 7 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹:𝑆𝐸)
56 ffvelrn 6621 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
5756expcom 404 . . . . . . . 8 (𝑋𝑆 → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
58573ad2ant3 1126 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
5955, 58syl5com 31 . . . . . 6 (𝐹 ∈ (𝐸𝑚 𝑆) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹𝑋) ∈ 𝐸))
6059impcom 398 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸𝑚 𝑆)) → (𝐹𝑋) ∈ 𝐸)
612, 34grpinvcl 17854 . . . . 5 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
6254, 60, 61syl2anc 579 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸𝑚 𝑆)) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
63623ad2antr1 1196 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
641adantr 474 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
6520, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit1 43263 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))
66653adantr3 1173 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))
67 elmapi 8162 . . . . . 6 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
68 ffvelrn 6621 . . . . . . 7 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
6968ex 403 . . . . . 6 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7066, 67, 693syl 18 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7170imp 397 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
72 elpwi 4388 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
73 eldifi 3954 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
74 ssel2 3815 . . . . . . . . . 10 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
7574expcom 404 . . . . . . . . 9 (𝑧𝑆 → (𝑆𝐵𝑧𝐵))
7673, 75syl 17 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆𝐵𝑧𝐵))
7772, 76syl5com 31 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
78773ad2ant1 1124 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
7978adantr 474 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
8079imp 397 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵)
8120, 3, 48, 2lmodvscl 19272 . . . 4 ((𝑀 ∈ LMod ∧ (𝐺𝑧) ∈ 𝐸𝑧𝐵) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
8264, 71, 80, 81syl3anc 1439 . . 3 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
83 simp2 1128 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
8483, 23jca 507 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8584adantr 474 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8620, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit2 43264 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
8786, 32syl6breq 4927 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
883, 2scmfsupp 43156 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp (0g𝑀))
8988, 33syl6breqr 4928 . . . 4 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9085, 66, 87, 89syl3anc 1439 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9120, 3, 2, 33, 47, 48, 1, 51, 63, 82, 90gsumvsmul 19319 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
9226, 46, 913eqtr2rd 2820 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106  Vcvv 3397   ∖ cdif 3788   ⊆ wss 3791  𝒫 cpw 4378  {csn 4397   class class class wbr 4886   ↦ cmpt 4965   ↾ cres 5357  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922   ↑𝑚 cmap 8140   finSupp cfsupp 8563  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486   Σg cgsu 16487  Grpcgrp 17809  invgcminusg 17810  Unitcui 19026  invrcinvr 19058  LModclmod 19255   linC clinc 43190 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-0g 16488  df-gsum 16489  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-lmod 19257  df-linc 43192 This theorem is referenced by:  lincresunit3  43267
 Copyright terms: Public domain W3C validator