Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem2 Structured version   Visualization version   GIF version

Theorem lincresunit3lem2 44536
 Description: Lemma 2 for lincresunit3 44537. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠,𝐵   𝑧,𝐸   𝑧,𝐹   𝑧,𝐺   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑆   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍   0 ,𝑠,𝑧
Allowed substitution hints:   𝑅(𝑠)   · (𝑧)   𝐺(𝑠)   𝐼(𝑧)   𝑍(𝑠)

Proof of Theorem lincresunit3lem2
StepHypRef Expression
1 simpl2 1188 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincresunit.e . . . . . . . . . 10 𝐸 = (Base‘𝑅)
3 lincresunit.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
43fveq2i 6672 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2844 . . . . . . . . 9 𝐸 = (Base‘(Scalar‘𝑀))
65oveq1i 7165 . . . . . . . 8 (𝐸m 𝑆) = ((Base‘(Scalar‘𝑀)) ↑m 𝑆)
76eleq2i 2904 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
87biimpi 218 . . . . . 6 (𝐹 ∈ (𝐸m 𝑆) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
983ad2ant1 1129 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
109adantl 484 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
11 difssd 4108 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
12 elmapssres 8430 . . . 4 ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆) ∧ (𝑆 ∖ {𝑋}) ⊆ 𝑆) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
1310, 11, 12syl2anc 586 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
14 elpwi 4547 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
1514ssdifssd 4118 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
16 difexg 5230 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
17 elpwg 4541 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1816, 17syl 17 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1915, 18mpbird 259 . . . . . 6 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
20 lincresunit.b . . . . . . 7 𝐵 = (Base‘𝑀)
2120pweqi 4556 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2219, 21eleq2s 2931 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
23223ad2ant1 1129 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
2423adantr 483 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
25 lincval 44465 . . 3 ((𝑀 ∈ LMod ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
261, 13, 24, 25syl3anc 1367 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
27 simpll 765 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
28 simplr1 1211 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝐹 ∈ (𝐸m 𝑆))
29 simplr2 1212 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
30 simpr 487 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
31 lincresunit.u . . . . . . 7 𝑈 = (Unit‘𝑅)
32 lincresunit.0 . . . . . . 7 0 = (0g𝑅)
33 lincresunit.z . . . . . . 7 𝑍 = (0g𝑀)
34 lincresunit.n . . . . . . 7 𝑁 = (invg𝑅)
35 lincresunit.i . . . . . . 7 𝐼 = (invr𝑅)
36 lincresunit.t . . . . . . 7 · = (.r𝑅)
37 lincresunit.g . . . . . . 7 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3820, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit3lem1 44535 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
3927, 28, 29, 30, 38syl13anc 1368 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
40 fvres 6688 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4140adantl 484 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4241eqcomd 2827 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧))
4342oveq1d 7170 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑧)( ·𝑠𝑀)𝑧) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4439, 43eqtrd 2856 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4544mpteq2dva 5160 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧)))
4645oveq2d 7171 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
47 eqid 2821 . . 3 (+g𝑀) = (+g𝑀)
48 eqid 2821 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
49 difexg 5230 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
50493ad2ant1 1129 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
5150adantr 483 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
523lmodfgrp 19642 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
53523ad2ant2 1130 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
5453adantr 483 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸m 𝑆)) → 𝑅 ∈ Grp)
55 elmapi 8427 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
56 ffvelrn 6848 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
5756expcom 416 . . . . . . . 8 (𝑋𝑆 → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
58573ad2ant3 1131 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
5955, 58syl5com 31 . . . . . 6 (𝐹 ∈ (𝐸m 𝑆) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹𝑋) ∈ 𝐸))
6059impcom 410 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸m 𝑆)) → (𝐹𝑋) ∈ 𝐸)
612, 34grpinvcl 18150 . . . . 5 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
6254, 60, 61syl2anc 586 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸m 𝑆)) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
63623ad2antr1 1184 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
641adantr 483 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
6520, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit1 44533 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
66653adantr3 1167 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
67 elmapi 8427 . . . . . 6 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
68 ffvelrn 6848 . . . . . . 7 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
6968ex 415 . . . . . 6 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7066, 67, 693syl 18 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7170imp 409 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
72 elpwi 4547 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
73 eldifi 4102 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
74 ssel2 3961 . . . . . . . . . 10 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
7574expcom 416 . . . . . . . . 9 (𝑧𝑆 → (𝑆𝐵𝑧𝐵))
7673, 75syl 17 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆𝐵𝑧𝐵))
7772, 76syl5com 31 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
78773ad2ant1 1129 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
7978adantr 483 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
8079imp 409 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵)
8120, 3, 48, 2lmodvscl 19650 . . . 4 ((𝑀 ∈ LMod ∧ (𝐺𝑧) ∈ 𝐸𝑧𝐵) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
8264, 71, 80, 81syl3anc 1367 . . 3 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
83 simp2 1133 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
8483, 23jca 514 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8584adantr 483 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8620, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit2 44534 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
8786, 32breqtrdi 5106 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
883, 2scmfsupp 44427 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp (0g𝑀))
8988, 33breqtrrdi 5107 . . . 4 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9085, 66, 87, 89syl3anc 1367 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9120, 3, 2, 33, 47, 48, 1, 51, 63, 82, 90gsumvsmul 19697 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
9226, 46, 913eqtr2rd 2863 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  Vcvv 3494   ∖ cdif 3932   ⊆ wss 3935  𝒫 cpw 4538  {csn 4566   class class class wbr 5065   ↦ cmpt 5145   ↾ cres 5556  ⟶wf 6350  ‘cfv 6354  (class class class)co 7155   ↑m cmap 8405   finSupp cfsupp 8832  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  Scalarcsca 16567   ·𝑠 cvsca 16568  0gc0g 16712   Σg cgsu 16713  Grpcgrp 18102  invgcminusg 18103  Unitcui 19388  invrcinvr 19420  LModclmod 19633   linC clinc 44460 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-gsum 16715  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-minusg 18106  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-lmod 19635  df-linc 44462 This theorem is referenced by:  lincresunit3  44537
 Copyright terms: Public domain W3C validator