MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval2 Structured version   Visualization version   GIF version

Theorem qtopval2 23590
Description: Value of the quotient topology function when 𝐹 is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopval2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝑉,𝑠   𝑌,𝑠   𝑍,𝑠   𝑋,𝑠

Proof of Theorem qtopval2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐽𝑉)
2 fof 6775 . . . . 5 (𝐹:𝑍onto𝑌𝐹:𝑍𝑌)
323ad2ant2 1134 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹:𝑍𝑌)
4 qtopval.1 . . . . . 6 𝑋 = 𝐽
5 uniexg 7719 . . . . . . 7 (𝐽𝑉 𝐽 ∈ V)
653ad2ant1 1133 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐽 ∈ V)
74, 6eqeltrid 2833 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑋 ∈ V)
8 simp3 1138 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍𝑋)
97, 8ssexd 5282 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍 ∈ V)
103, 9fexd 7204 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹 ∈ V)
114qtopval 23589 . . 3 ((𝐽𝑉𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
121, 10, 11syl2anc 584 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
13 imassrn 6045 . . . . . 6 (𝐹𝑋) ⊆ ran 𝐹
14 forn 6778 . . . . . . 7 (𝐹:𝑍onto𝑌 → ran 𝐹 = 𝑌)
15143ad2ant2 1134 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ran 𝐹 = 𝑌)
1613, 15sseqtrid 3992 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑋) ⊆ 𝑌)
17 foima 6780 . . . . . . 7 (𝐹:𝑍onto𝑌 → (𝐹𝑍) = 𝑌)
18173ad2ant2 1134 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑍) = 𝑌)
19 imass2 6076 . . . . . . 7 (𝑍𝑋 → (𝐹𝑍) ⊆ (𝐹𝑋))
208, 19syl 17 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑍) ⊆ (𝐹𝑋))
2118, 20eqsstrrd 3985 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑌 ⊆ (𝐹𝑋))
2216, 21eqssd 3967 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑋) = 𝑌)
2322pweqd 4583 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝒫 (𝐹𝑋) = 𝒫 𝑌)
24 cnvimass 6056 . . . . . . 7 (𝐹𝑠) ⊆ dom 𝐹
2524, 3fssdm 6710 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑠) ⊆ 𝑍)
2625, 8sstrd 3960 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑠) ⊆ 𝑋)
27 dfss2 3935 . . . . 5 ((𝐹𝑠) ⊆ 𝑋 ↔ ((𝐹𝑠) ∩ 𝑋) = (𝐹𝑠))
2826, 27sylib 218 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ((𝐹𝑠) ∩ 𝑋) = (𝐹𝑠))
2928eleq1d 2814 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (((𝐹𝑠) ∩ 𝑋) ∈ 𝐽 ↔ (𝐹𝑠) ∈ 𝐽))
3023, 29rabeqbidv 3427 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
3112, 30eqtrd 2765 1 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  ccnv 5640  ran crn 5642  cima 5644  wf 6510  ontowfo 6512  (class class class)co 7390   qTop cqtop 17473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-qtop 17477
This theorem is referenced by:  elqtop  23591
  Copyright terms: Public domain W3C validator