| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmup2 | Structured version Visualization version GIF version | ||
| Description: The domain of (𝐷UP𝐸) is a relation. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| reldmup2 | ⊢ Rel dom (𝐷UP𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 3 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 5 | eqid 2734 | . . 3 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | upfval 48977 | . 2 ⊢ (𝐷UP𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ (Base‘𝐸) ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐷) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐸)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑤(Hom ‘𝐸)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐷)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐸)((1st ‘𝑓)‘𝑦))𝑚))}) |
| 7 | 6 | reldmmpo 7536 | 1 ⊢ Rel dom (𝐷UP𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3355 〈cop 4605 {copab 5179 dom cdm 5652 Rel wrel 5657 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Basecbs 17215 Hom chom 17269 compcco 17270 Func cfunc 17854 UPcup 48974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-func 17858 df-up 48975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |