MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strov2rcl Structured version   Visualization version   GIF version

Theorem strov2rcl 17152
Description: Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
strov2rcl.s 𝑆 = (𝐼𝐹𝑅)
strov2rcl.b 𝐵 = (Base‘𝑆)
strov2rcl.f Rel dom 𝐹
Assertion
Ref Expression
strov2rcl (𝑋𝐵𝐼 ∈ V)

Proof of Theorem strov2rcl
StepHypRef Expression
1 strov2rcl.f . . 3 Rel dom 𝐹
2 strov2rcl.s . . 3 𝑆 = (𝐼𝐹𝑅)
3 strov2rcl.b . . 3 𝐵 = (Base‘𝑆)
41, 2, 3elbasov 17151 . 2 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
54simpld 496 1 (𝑋𝐵𝐼 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475  dom cdm 5677  Rel wrel 5682  cfv 6544  (class class class)co 7409  Basecbs 17144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-nn 12213  df-slot 17115  df-ndx 17127  df-base 17145
This theorem is referenced by:  dsmmbas2  21292  frlmrcl  21312  mplrcl  21553  psropprmul  21760
  Copyright terms: Public domain W3C validator