![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strov2rcl | Structured version Visualization version GIF version |
Description: Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
strov2rcl.s | ⊢ 𝑆 = (𝐼𝐹𝑅) |
strov2rcl.b | ⊢ 𝐵 = (Base‘𝑆) |
strov2rcl.f | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
strov2rcl | ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strov2rcl.f | . . 3 ⊢ Rel dom 𝐹 | |
2 | strov2rcl.s | . . 3 ⊢ 𝑆 = (𝐼𝐹𝑅) | |
3 | strov2rcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
4 | 1, 2, 3 | elbasov 17184 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
5 | 4 | simpld 493 | 1 ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 dom cdm 5670 Rel wrel 5675 ‘cfv 6541 (class class class)co 7414 Basecbs 17177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-1cn 11194 ax-addcl 11196 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-om 7867 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-nn 12241 df-slot 17148 df-ndx 17160 df-base 17178 |
This theorem is referenced by: dsmmbas2 21673 frlmrcl 21693 mplrcl 21941 psropprmul 22163 |
Copyright terms: Public domain | W3C validator |