Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zeroopropd Structured version   Visualization version   GIF version

Theorem zeroopropd 49406
Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
zeroopropd (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))

Proof of Theorem zeroopropd
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5zeroopropdlem 49403 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2739 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2739 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11zeroopropdlem 49403 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐷) = (ZeroO‘𝐶))
1312eqcomd 2739 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
141ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
153ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (compf𝐶) = (compf𝐷))
1614, 15initopropd 49404 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
1714, 15termopropd 49405 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷))
1816, 17ineq12d 4170 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((InitO‘𝐶) ∩ (TermO‘𝐶)) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
19 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
20 eqid 2733 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
21 eqid 2733 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
2219, 20, 21zerooval 17910 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
243adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
25 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
26 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
2723, 24, 25, 26catpropd 17623 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2827biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
29 eqid 2733 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
30 eqid 2733 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3128, 29, 30zerooval 17910 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
3218, 22, 313eqtr4d 2778 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
3327pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
3433, 32sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
35 zeroofn 17904 . . . . . . . 8 ZeroO Fn Cat
3635fndmi 6593 . . . . . . 7 dom ZeroO = Cat
3736eleq2i 2825 . . . . . 6 (𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat)
38 ndmfv 6863 . . . . . 6 𝐶 ∈ dom ZeroO → (ZeroO‘𝐶) = ∅)
3937, 38sylnbir 331 . . . . 5 𝐶 ∈ Cat → (ZeroO‘𝐶) = ∅)
4039ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = ∅)
4136eleq2i 2825 . . . . . 6 (𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat)
42 ndmfv 6863 . . . . . 6 𝐷 ∈ dom ZeroO → (ZeroO‘𝐷) = ∅)
4341, 42sylnbir 331 . . . . 5 𝐷 ∈ Cat → (ZeroO‘𝐷) = ∅)
4443ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐷) = ∅)
4540, 44eqtr4d 2771 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
4632, 34, 45pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
476, 13, 46pm2.61dda 814 1 (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  c0 4282  dom cdm 5621  cfv 6489  Basecbs 17127  Hom chom 17179  Catccat 17578  Homf chomf 17580  compfccomf 17581  InitOcinito 17896  TermOctermo 17897  ZeroOczeroo 17898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-cat 17582  df-homf 17584  df-comf 17585  df-inito 17899  df-termo 17900  df-zeroo 17901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator