Proof of Theorem zeroopropd
| Step | Hyp | Ref
| Expression |
| 1 | | initopropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 3 | | initopropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V) |
| 6 | 2, 4, 5 | zeroopropdlem 48965 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| 7 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 8 | 7 | eqcomd 2740 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf
‘𝐷) =
(Homf ‘𝐶)) |
| 9 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) →
(compf‘𝐶) = (compf‘𝐷)) |
| 10 | 9 | eqcomd 2740 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) →
(compf‘𝐷) = (compf‘𝐶)) |
| 11 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V) |
| 12 | 8, 10, 11 | zeroopropdlem 48965 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐷) = (ZeroO‘𝐶)) |
| 13 | 12 | eqcomd 2740 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| 14 | 1 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 15 | 3 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) →
(compf‘𝐶) = (compf‘𝐷)) |
| 16 | 14, 15 | initopropd 48966 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 17 | 14, 15 | termopropd 48967 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷)) |
| 18 | 16, 17 | ineq12d 4194 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((InitO‘𝐶) ∩ (TermO‘𝐶)) = ((InitO‘𝐷) ∩ (TermO‘𝐷))) |
| 19 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat) |
| 20 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 21 | | eqid 2734 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 22 | 19, 20, 21 | zerooval 17993 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| 23 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 24 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 25 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V) |
| 26 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V) |
| 27 | 23, 24, 25, 26 | catpropd 17706 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 28 | 27 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat) |
| 29 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 30 | | eqid 2734 |
. . . . 5
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 31 | 28, 29, 30 | zerooval 17993 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷))) |
| 32 | 18, 22, 31 | 3eqtr4d 2779 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| 33 | 27 | pm5.32i 574 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat)) |
| 34 | 33, 32 | sylbir 235 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| 35 | | zeroofn 17987 |
. . . . . . . 8
⊢ ZeroO Fn
Cat |
| 36 | 35 | fndmi 6638 |
. . . . . . 7
⊢ dom ZeroO
= Cat |
| 37 | 36 | eleq2i 2825 |
. . . . . 6
⊢ (𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat) |
| 38 | | ndmfv 6907 |
. . . . . 6
⊢ (¬
𝐶 ∈ dom ZeroO →
(ZeroO‘𝐶) =
∅) |
| 39 | 37, 38 | sylnbir 331 |
. . . . 5
⊢ (¬
𝐶 ∈ Cat →
(ZeroO‘𝐶) =
∅) |
| 40 | 39 | ad2antrl 728 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = ∅) |
| 41 | 36 | eleq2i 2825 |
. . . . . 6
⊢ (𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat) |
| 42 | | ndmfv 6907 |
. . . . . 6
⊢ (¬
𝐷 ∈ dom ZeroO →
(ZeroO‘𝐷) =
∅) |
| 43 | 41, 42 | sylnbir 331 |
. . . . 5
⊢ (¬
𝐷 ∈ Cat →
(ZeroO‘𝐷) =
∅) |
| 44 | 43 | ad2antll 729 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐷) = ∅) |
| 45 | 40, 44 | eqtr4d 2772 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| 46 | 32, 34, 45 | pm2.61ddan 813 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| 47 | 6, 13, 46 | pm2.61dda 814 |
1
⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |