Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zeroopropd Structured version   Visualization version   GIF version

Theorem zeroopropd 49207
Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
zeroopropd (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))

Proof of Theorem zeroopropd
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5zeroopropdlem 49204 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2735 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2735 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11zeroopropdlem 49204 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐷) = (ZeroO‘𝐶))
1312eqcomd 2735 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
141ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
153ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (compf𝐶) = (compf𝐷))
1614, 15initopropd 49205 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
1714, 15termopropd 49206 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷))
1816, 17ineq12d 4180 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((InitO‘𝐶) ∩ (TermO‘𝐶)) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
19 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
20 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
21 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
2219, 20, 21zerooval 17933 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
243adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
25 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
26 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
2723, 24, 25, 26catpropd 17646 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2827biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
29 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
30 eqid 2729 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3128, 29, 30zerooval 17933 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
3218, 22, 313eqtr4d 2774 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
3327pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
3433, 32sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
35 zeroofn 17927 . . . . . . . 8 ZeroO Fn Cat
3635fndmi 6604 . . . . . . 7 dom ZeroO = Cat
3736eleq2i 2820 . . . . . 6 (𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat)
38 ndmfv 6875 . . . . . 6 𝐶 ∈ dom ZeroO → (ZeroO‘𝐶) = ∅)
3937, 38sylnbir 331 . . . . 5 𝐶 ∈ Cat → (ZeroO‘𝐶) = ∅)
4039ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = ∅)
4136eleq2i 2820 . . . . . 6 (𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat)
42 ndmfv 6875 . . . . . 6 𝐷 ∈ dom ZeroO → (ZeroO‘𝐷) = ∅)
4341, 42sylnbir 331 . . . . 5 𝐷 ∈ Cat → (ZeroO‘𝐷) = ∅)
4443ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐷) = ∅)
4540, 44eqtr4d 2767 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
4632, 34, 45pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
476, 13, 46pm2.61dda 814 1 (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  c0 4292  dom cdm 5631  cfv 6499  Basecbs 17155  Hom chom 17207  Catccat 17601  Homf chomf 17603  compfccomf 17604  InitOcinito 17919  TermOctermo 17920  ZeroOczeroo 17921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-cat 17605  df-homf 17607  df-comf 17608  df-inito 17922  df-termo 17923  df-zeroo 17924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator