Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zeroopropd Structured version   Visualization version   GIF version

Theorem zeroopropd 49216
Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
zeroopropd (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))

Proof of Theorem zeroopropd
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5zeroopropdlem 49213 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2736 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2736 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11zeroopropdlem 49213 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐷) = (ZeroO‘𝐶))
1312eqcomd 2736 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
141ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
153ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (compf𝐶) = (compf𝐷))
1614, 15initopropd 49214 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
1714, 15termopropd 49215 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷))
1816, 17ineq12d 4186 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((InitO‘𝐶) ∩ (TermO‘𝐶)) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
19 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
20 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
21 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
2219, 20, 21zerooval 17963 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
243adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
25 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
26 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
2723, 24, 25, 26catpropd 17676 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2827biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
29 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
30 eqid 2730 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3128, 29, 30zerooval 17963 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
3218, 22, 313eqtr4d 2775 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
3327pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
3433, 32sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
35 zeroofn 17957 . . . . . . . 8 ZeroO Fn Cat
3635fndmi 6624 . . . . . . 7 dom ZeroO = Cat
3736eleq2i 2821 . . . . . 6 (𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat)
38 ndmfv 6895 . . . . . 6 𝐶 ∈ dom ZeroO → (ZeroO‘𝐶) = ∅)
3937, 38sylnbir 331 . . . . 5 𝐶 ∈ Cat → (ZeroO‘𝐶) = ∅)
4039ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = ∅)
4136eleq2i 2821 . . . . . 6 (𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat)
42 ndmfv 6895 . . . . . 6 𝐷 ∈ dom ZeroO → (ZeroO‘𝐷) = ∅)
4341, 42sylnbir 331 . . . . 5 𝐷 ∈ Cat → (ZeroO‘𝐷) = ∅)
4443ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐷) = ∅)
4540, 44eqtr4d 2768 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
4632, 34, 45pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
476, 13, 46pm2.61dda 814 1 (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3915  c0 4298  dom cdm 5640  cfv 6513  Basecbs 17185  Hom chom 17237  Catccat 17631  Homf chomf 17633  compfccomf 17634  InitOcinito 17949  TermOctermo 17950  ZeroOczeroo 17951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-cat 17635  df-homf 17637  df-comf 17638  df-inito 17952  df-termo 17953  df-zeroo 17954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator