Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zeroopropd Structured version   Visualization version   GIF version

Theorem zeroopropd 49230
Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
zeroopropd (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))

Proof of Theorem zeroopropd
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5zeroopropdlem 49227 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2735 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2735 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11zeroopropdlem 49227 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐷) = (ZeroO‘𝐶))
1312eqcomd 2735 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
141ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
153ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (compf𝐶) = (compf𝐷))
1614, 15initopropd 49228 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
1714, 15termopropd 49229 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷))
1816, 17ineq12d 4172 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((InitO‘𝐶) ∩ (TermO‘𝐶)) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
19 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
20 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
21 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
2219, 20, 21zerooval 17902 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
243adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
25 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
26 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
2723, 24, 25, 26catpropd 17615 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2827biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
29 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
30 eqid 2729 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3128, 29, 30zerooval 17902 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
3218, 22, 313eqtr4d 2774 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
3327pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
3433, 32sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
35 zeroofn 17896 . . . . . . . 8 ZeroO Fn Cat
3635fndmi 6586 . . . . . . 7 dom ZeroO = Cat
3736eleq2i 2820 . . . . . 6 (𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat)
38 ndmfv 6855 . . . . . 6 𝐶 ∈ dom ZeroO → (ZeroO‘𝐶) = ∅)
3937, 38sylnbir 331 . . . . 5 𝐶 ∈ Cat → (ZeroO‘𝐶) = ∅)
4039ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = ∅)
4136eleq2i 2820 . . . . . 6 (𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat)
42 ndmfv 6855 . . . . . 6 𝐷 ∈ dom ZeroO → (ZeroO‘𝐷) = ∅)
4341, 42sylnbir 331 . . . . 5 𝐷 ∈ Cat → (ZeroO‘𝐷) = ∅)
4443ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐷) = ∅)
4540, 44eqtr4d 2767 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
4632, 34, 45pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (ZeroO‘𝐶) = (ZeroO‘𝐷))
476, 13, 46pm2.61dda 814 1 (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  c0 4284  dom cdm 5619  cfv 6482  Basecbs 17120  Hom chom 17172  Catccat 17570  Homf chomf 17572  compfccomf 17573  InitOcinito 17888  TermOctermo 17889  ZeroOczeroo 17890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-cat 17574  df-homf 17576  df-comf 17577  df-inito 17891  df-termo 17892  df-zeroo 17893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator