| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version | ||
| Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1xr | ⊢ 1 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11181 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | rexri 11239 | 1 ⊢ 1 ∈ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11076 ℝ*cxr 11214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-xr 11219 |
| This theorem is referenced by: xmulrid 13246 xmullid 13247 xmulm1 13248 x2times 13266 xov1plusxeqvd 13466 ico01fl0 13788 hashge1 14361 hashgt12el 14394 hashgt12el2 14395 hashgt23el 14396 sgn1 15065 fprodge1 15968 halfleoddlt 16339 isnzr2hash 20435 0ringnnzr 20441 xrsnsgrp 21326 leordtval2 23106 unirnblps 24314 unirnbl 24315 mopnex 24414 dscopn 24468 nmoid 24637 xrsmopn 24708 zdis 24712 metnrmlem1a 24754 metnrmlem1 24755 icopnfcnv 24847 icopnfhmeo 24848 iccpnfcnv 24849 iccpnfhmeo 24850 cncmet 25229 itg2monolem1 25658 itg2monolem3 25660 abelthlem2 26349 abelthlem3 26350 abelthlem5 26352 abelthlem7 26355 abelth 26358 dvlog2lem 26568 dvlog2 26569 logtayl 26576 logtayl2 26578 scvxcvx 26903 pntibndlem1 27507 pntibndlem2 27509 pntibnd 27511 pntlemc 27513 pnt 27532 padicabvf 27549 padicabvcxp 27550 elntg2 28919 nmopun 31950 pjnmopi 32084 xlt2addrd 32689 xdivrec 32854 xrsmulgzz 32954 xrnarchi 33145 rtelextdg2lem 33723 unitssxrge0 33897 xrge0iifcnv 33930 xrge0iifiso 33932 xrge0iifhom 33934 hasheuni 34082 ddemeas 34233 omssubadd 34298 prob01 34411 lfuhgr2 35113 dnizeq0 36470 iccioo01 37322 broucube 37655 asindmre 37704 dvasin 37705 areacirclem1 37709 aks6d1c6lem1 42165 imo72b2 44168 cvgdvgrat 44309 supxrgelem 45340 xrlexaddrp 45355 infxr 45370 infleinflem2 45374 limsup10exlem 45777 limsup10ex 45778 liminf10ex 45779 salexct2 46344 salgencntex 46348 ovn0lem 46570 expnegico01 48511 regt1loggt0 48529 rege1logbrege0 48551 rege1logbzge0 48552 dignnld 48596 eenglngeehlnmlem1 48730 eenglngeehlnmlem2 48731 iooii 48910 i0oii 48912 sepfsepc 48920 seppcld 48922 |
| Copyright terms: Public domain | W3C validator |