Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version |
Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
1xr | ⊢ 1 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10959 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | rexri 11017 | 1 ⊢ 1 ∈ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 1c1 10856 ℝ*cxr 10992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-xr 10997 |
This theorem is referenced by: xmulid1 12995 xmulid2 12996 xmulm1 12997 x2times 13015 xov1plusxeqvd 13212 ico01fl0 13520 hashge1 14085 hashgt12el 14118 hashgt12el2 14119 hashgt23el 14120 sgn1 14784 fprodge1 15686 halfleoddlt 16052 isnzr2hash 20516 0ringnnzr 20521 xrsnsgrp 20615 leordtval2 22344 unirnblps 23553 unirnbl 23554 mopnex 23656 dscopn 23710 nmoid 23887 xrsmopn 23956 zdis 23960 metnrmlem1a 24002 metnrmlem1 24003 icopnfcnv 24086 icopnfhmeo 24087 iccpnfcnv 24088 iccpnfhmeo 24089 cncmet 24467 itg2monolem1 24896 itg2monolem3 24898 abelthlem2 25572 abelthlem3 25573 abelthlem5 25575 abelthlem7 25578 abelth 25581 dvlog2lem 25788 dvlog2 25789 logtayl 25796 logtayl2 25798 scvxcvx 26116 pntibndlem1 26718 pntibndlem2 26720 pntibnd 26722 pntlemc 26724 pnt 26743 padicabvf 26760 padicabvcxp 26761 elntg2 27334 nmopun 30355 pjnmopi 30489 xlt2addrd 31060 xdivrec 31180 xrsmulgzz 31266 xrnarchi 31417 unitssxrge0 31829 xrge0iifcnv 31862 xrge0iifiso 31864 xrge0iifhom 31866 hasheuni 32032 ddemeas 32183 omssubadd 32246 prob01 32359 lfuhgr2 33059 dnizeq0 34634 iccioo01 35477 broucube 35790 asindmre 35839 dvasin 35840 areacirclem1 35844 imo72b2 41736 cvgdvgrat 41884 supxrgelem 42830 xrlexaddrp 42845 infxr 42860 infleinflem2 42864 limsup10exlem 43267 limsup10ex 43268 liminf10ex 43269 salexct2 43832 salgencntex 43836 ovn0lem 44057 expnegico01 45811 regt1loggt0 45834 rege1logbrege0 45856 rege1logbzge0 45857 dignnld 45901 eenglngeehlnmlem1 46035 eenglngeehlnmlem2 46036 iooii 46163 i0oii 46165 sepfsepc 46173 seppcld 46175 |
Copyright terms: Public domain | W3C validator |