| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version | ||
| Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1xr | ⊢ 1 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11233 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | rexri 11291 | 1 ⊢ 1 ∈ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 1c1 11128 ℝ*cxr 11266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-mulrcl 11190 ax-i2m1 11195 ax-1ne0 11196 ax-rrecex 11199 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-xr 11271 |
| This theorem is referenced by: xmulrid 13293 xmullid 13294 xmulm1 13295 x2times 13313 xov1plusxeqvd 13513 ico01fl0 13834 hashge1 14405 hashgt12el 14438 hashgt12el2 14439 hashgt23el 14440 sgn1 15109 fprodge1 16009 halfleoddlt 16379 isnzr2hash 20477 0ringnnzr 20483 xrsnsgrp 21368 leordtval2 23148 unirnblps 24356 unirnbl 24357 mopnex 24456 dscopn 24510 nmoid 24679 xrsmopn 24750 zdis 24754 metnrmlem1a 24796 metnrmlem1 24797 icopnfcnv 24889 icopnfhmeo 24890 iccpnfcnv 24891 iccpnfhmeo 24892 cncmet 25272 itg2monolem1 25701 itg2monolem3 25703 abelthlem2 26392 abelthlem3 26393 abelthlem5 26395 abelthlem7 26398 abelth 26401 dvlog2lem 26611 dvlog2 26612 logtayl 26619 logtayl2 26621 scvxcvx 26946 pntibndlem1 27550 pntibndlem2 27552 pntibnd 27554 pntlemc 27556 pnt 27575 padicabvf 27592 padicabvcxp 27593 elntg2 28910 nmopun 31941 pjnmopi 32075 xlt2addrd 32682 xdivrec 32847 xrsmulgzz 32947 xrnarchi 33128 rtelextdg2lem 33706 unitssxrge0 33877 xrge0iifcnv 33910 xrge0iifiso 33912 xrge0iifhom 33914 hasheuni 34062 ddemeas 34213 omssubadd 34278 prob01 34391 lfuhgr2 35087 dnizeq0 36439 iccioo01 37291 broucube 37624 asindmre 37673 dvasin 37674 areacirclem1 37678 aks6d1c6lem1 42129 imo72b2 44143 cvgdvgrat 44285 supxrgelem 45312 xrlexaddrp 45327 infxr 45342 infleinflem2 45346 limsup10exlem 45749 limsup10ex 45750 liminf10ex 45751 salexct2 46316 salgencntex 46320 ovn0lem 46542 expnegico01 48442 regt1loggt0 48464 rege1logbrege0 48486 rege1logbzge0 48487 dignnld 48531 eenglngeehlnmlem1 48665 eenglngeehlnmlem2 48666 iooii 48840 i0oii 48842 sepfsepc 48850 seppcld 48852 |
| Copyright terms: Public domain | W3C validator |