![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version |
Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
1xr | ⊢ 1 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10437 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | rexri 10497 | 1 ⊢ 1 ∈ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2051 1c1 10334 ℝ*cxr 10471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-mulcl 10395 ax-mulrcl 10396 ax-i2m1 10401 ax-1ne0 10402 ax-rrecex 10405 ax-cnre 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-iota 6149 df-fv 6193 df-ov 6977 df-xr 10476 |
This theorem is referenced by: xmulid1 12486 xmulid2 12487 xmulm1 12488 x2times 12506 xov1plusxeqvd 12698 ico01fl0 13002 hashge1 13561 hashgt12el 13594 hashgt12el2 13595 hashgt23el 13596 sgn1 14310 fprodge1 15207 halfleoddlt 15569 isnzr2hash 19770 0ringnnzr 19775 xrsnsgrp 20298 leordtval2 21539 unirnblps 22747 unirnbl 22748 mopnex 22847 dscopn 22901 nmoid 23069 xrsmopn 23138 zdis 23142 metnrmlem1a 23184 metnrmlem1 23185 icopnfcnv 23264 icopnfhmeo 23265 iccpnfcnv 23266 iccpnfhmeo 23267 cncmet 23643 itg2monolem1 24069 itg2monolem3 24071 abelthlem2 24738 abelthlem3 24739 abelthlem5 24741 abelthlem7 24744 abelth 24747 dvlog2lem 24951 dvlog2 24952 logtayl 24959 logtayl2 24961 scvxcvx 25280 pntibndlem1 25882 pntibndlem2 25884 pntibnd 25886 pntlemc 25888 pnt 25907 padicabvf 25924 padicabvcxp 25925 elntg2 26489 nmopun 29587 pjnmopi 29721 xlt2addrd 30258 xdivrec 30373 xrsmulgzz 30423 xrnarchi 30511 unitssxrge0 30819 xrge0iifcnv 30852 xrge0iifiso 30854 xrge0iifhom 30856 hasheuni 31020 ddemeas 31172 omssubadd 31235 prob01 31349 dnizeq0 33371 broucube 34404 asindmre 34455 dvasin 34456 areacirclem1 34460 imo72b2 39928 cvgdvgrat 40099 supxrgelem 41068 xrlexaddrp 41083 infxr 41098 infleinflem2 41102 limsup10exlem 41518 limsup10ex 41519 liminf10ex 41520 salexct2 42087 salgencntex 42091 ovn0lem 42312 expnegico01 43975 regt1loggt0 43998 rege1logbrege0 44020 rege1logbzge0 44021 dignnld 44065 eenglngeehlnmlem1 44126 eenglngeehlnmlem2 44127 |
Copyright terms: Public domain | W3C validator |