| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version | ||
| Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1xr | ⊢ 1 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11119 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | rexri 11177 | 1 ⊢ 1 ∈ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 1c1 11014 ℝ*cxr 11152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-mulrcl 11076 ax-i2m1 11081 ax-1ne0 11082 ax-rrecex 11085 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-xr 11157 |
| This theorem is referenced by: xmulrid 13180 xmullid 13181 xmulm1 13182 x2times 13200 xov1plusxeqvd 13400 ico01fl0 13725 hashge1 14298 hashgt12el 14331 hashgt12el2 14332 hashgt23el 14333 sgn1 15001 fprodge1 15904 halfleoddlt 16275 isnzr2hash 20436 0ringnnzr 20442 xrsnsgrp 21346 leordtval2 23128 unirnblps 24335 unirnbl 24336 mopnex 24435 dscopn 24489 nmoid 24658 xrsmopn 24729 zdis 24733 metnrmlem1a 24775 metnrmlem1 24776 icopnfcnv 24868 icopnfhmeo 24869 iccpnfcnv 24870 iccpnfhmeo 24871 cncmet 25250 itg2monolem1 25679 itg2monolem3 25681 abelthlem2 26370 abelthlem3 26371 abelthlem5 26373 abelthlem7 26376 abelth 26379 dvlog2lem 26589 dvlog2 26590 logtayl 26597 logtayl2 26599 scvxcvx 26924 pntibndlem1 27528 pntibndlem2 27530 pntibnd 27532 pntlemc 27534 pnt 27553 padicabvf 27570 padicabvcxp 27571 elntg2 28965 nmopun 31996 pjnmopi 32130 xlt2addrd 32746 xdivrec 32914 xrsmulgzz 32997 xrnarchi 33160 rtelextdg2lem 33760 unitssxrge0 33934 xrge0iifcnv 33967 xrge0iifiso 33969 xrge0iifhom 33971 hasheuni 34119 ddemeas 34270 omssubadd 34334 prob01 34447 lfuhgr2 35184 dnizeq0 36540 iccioo01 37392 broucube 37714 asindmre 37763 dvasin 37764 areacirclem1 37768 aks6d1c6lem1 42283 imo72b2 44289 cvgdvgrat 44430 supxrgelem 45460 xrlexaddrp 45475 infxr 45489 infleinflem2 45493 limsup10exlem 45894 limsup10ex 45895 liminf10ex 45896 salexct2 46461 salgencntex 46465 ovn0lem 46687 expnegico01 48643 regt1loggt0 48661 rege1logbrege0 48683 rege1logbzge0 48684 dignnld 48728 eenglngeehlnmlem1 48862 eenglngeehlnmlem2 48863 iooii 49042 i0oii 49044 sepfsepc 49052 seppcld 49054 |
| Copyright terms: Public domain | W3C validator |