| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version | ||
| Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1xr | ⊢ 1 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11134 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | rexri 11192 | 1 ⊢ 1 ∈ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11029 ℝ*cxr 11167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rrecex 11100 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-xr 11172 |
| This theorem is referenced by: xmulrid 13199 xmullid 13200 xmulm1 13201 x2times 13219 xov1plusxeqvd 13419 ico01fl0 13741 hashge1 14314 hashgt12el 14347 hashgt12el2 14348 hashgt23el 14349 sgn1 15017 fprodge1 15920 halfleoddlt 16291 isnzr2hash 20422 0ringnnzr 20428 xrsnsgrp 21332 leordtval2 23115 unirnblps 24323 unirnbl 24324 mopnex 24423 dscopn 24477 nmoid 24646 xrsmopn 24717 zdis 24721 metnrmlem1a 24763 metnrmlem1 24764 icopnfcnv 24856 icopnfhmeo 24857 iccpnfcnv 24858 iccpnfhmeo 24859 cncmet 25238 itg2monolem1 25667 itg2monolem3 25669 abelthlem2 26358 abelthlem3 26359 abelthlem5 26361 abelthlem7 26364 abelth 26367 dvlog2lem 26577 dvlog2 26578 logtayl 26585 logtayl2 26587 scvxcvx 26912 pntibndlem1 27516 pntibndlem2 27518 pntibnd 27520 pntlemc 27522 pnt 27541 padicabvf 27558 padicabvcxp 27559 elntg2 28948 nmopun 31976 pjnmopi 32110 xlt2addrd 32715 xdivrec 32880 xrsmulgzz 32976 xrnarchi 33136 rtelextdg2lem 33692 unitssxrge0 33866 xrge0iifcnv 33899 xrge0iifiso 33901 xrge0iifhom 33903 hasheuni 34051 ddemeas 34202 omssubadd 34267 prob01 34380 lfuhgr2 35091 dnizeq0 36448 iccioo01 37300 broucube 37633 asindmre 37682 dvasin 37683 areacirclem1 37687 aks6d1c6lem1 42143 imo72b2 44145 cvgdvgrat 44286 supxrgelem 45317 xrlexaddrp 45332 infxr 45347 infleinflem2 45351 limsup10exlem 45754 limsup10ex 45755 liminf10ex 45756 salexct2 46321 salgencntex 46325 ovn0lem 46547 expnegico01 48504 regt1loggt0 48522 rege1logbrege0 48544 rege1logbzge0 48545 dignnld 48589 eenglngeehlnmlem1 48723 eenglngeehlnmlem2 48724 iooii 48903 i0oii 48905 sepfsepc 48913 seppcld 48915 |
| Copyright terms: Public domain | W3C validator |