![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version |
Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
1xr | ⊢ 1 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | rexri 11348 | 1 ⊢ 1 ∈ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 1c1 11185 ℝ*cxr 11323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-xr 11328 |
This theorem is referenced by: xmulrid 13341 xmullid 13342 xmulm1 13343 x2times 13361 xov1plusxeqvd 13558 ico01fl0 13870 hashge1 14438 hashgt12el 14471 hashgt12el2 14472 hashgt23el 14473 sgn1 15141 fprodge1 16043 halfleoddlt 16410 isnzr2hash 20545 0ringnnzr 20551 xrsnsgrp 21443 leordtval2 23241 unirnblps 24450 unirnbl 24451 mopnex 24553 dscopn 24607 nmoid 24784 xrsmopn 24853 zdis 24857 metnrmlem1a 24899 metnrmlem1 24900 icopnfcnv 24992 icopnfhmeo 24993 iccpnfcnv 24994 iccpnfhmeo 24995 cncmet 25375 itg2monolem1 25805 itg2monolem3 25807 abelthlem2 26494 abelthlem3 26495 abelthlem5 26497 abelthlem7 26500 abelth 26503 dvlog2lem 26712 dvlog2 26713 logtayl 26720 logtayl2 26722 scvxcvx 27047 pntibndlem1 27651 pntibndlem2 27653 pntibnd 27655 pntlemc 27657 pnt 27676 padicabvf 27693 padicabvcxp 27694 elntg2 29018 nmopun 32046 pjnmopi 32180 xlt2addrd 32765 xdivrec 32891 xrsmulgzz 32992 xrnarchi 33164 rtelextdg2lem 33717 unitssxrge0 33846 xrge0iifcnv 33879 xrge0iifiso 33881 xrge0iifhom 33883 hasheuni 34049 ddemeas 34200 omssubadd 34265 prob01 34378 lfuhgr2 35086 dnizeq0 36441 iccioo01 37293 broucube 37614 asindmre 37663 dvasin 37664 areacirclem1 37668 aks6d1c6lem1 42127 imo72b2 44134 cvgdvgrat 44282 supxrgelem 45252 xrlexaddrp 45267 infxr 45282 infleinflem2 45286 limsup10exlem 45693 limsup10ex 45694 liminf10ex 45695 salexct2 46260 salgencntex 46264 ovn0lem 46486 expnegico01 48247 regt1loggt0 48270 rege1logbrege0 48292 rege1logbzge0 48293 dignnld 48337 eenglngeehlnmlem1 48471 eenglngeehlnmlem2 48472 iooii 48597 i0oii 48599 sepfsepc 48607 seppcld 48609 |
Copyright terms: Public domain | W3C validator |