| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version | ||
| Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1xr | ⊢ 1 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11109 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | rexri 11167 | 1 ⊢ 1 ∈ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 1c1 11004 ℝ*cxr 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-mulrcl 11066 ax-i2m1 11071 ax-1ne0 11072 ax-rrecex 11075 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-xr 11147 |
| This theorem is referenced by: xmulrid 13175 xmullid 13176 xmulm1 13177 x2times 13195 xov1plusxeqvd 13395 ico01fl0 13720 hashge1 14293 hashgt12el 14326 hashgt12el2 14327 hashgt23el 14328 sgn1 14996 fprodge1 15899 halfleoddlt 16270 isnzr2hash 20432 0ringnnzr 20438 xrsnsgrp 21342 leordtval2 23125 unirnblps 24332 unirnbl 24333 mopnex 24432 dscopn 24486 nmoid 24655 xrsmopn 24726 zdis 24730 metnrmlem1a 24772 metnrmlem1 24773 icopnfcnv 24865 icopnfhmeo 24866 iccpnfcnv 24867 iccpnfhmeo 24868 cncmet 25247 itg2monolem1 25676 itg2monolem3 25678 abelthlem2 26367 abelthlem3 26368 abelthlem5 26370 abelthlem7 26373 abelth 26376 dvlog2lem 26586 dvlog2 26587 logtayl 26594 logtayl2 26596 scvxcvx 26921 pntibndlem1 27525 pntibndlem2 27527 pntibnd 27529 pntlemc 27531 pnt 27550 padicabvf 27567 padicabvcxp 27568 elntg2 28961 nmopun 31989 pjnmopi 32123 xlt2addrd 32737 xdivrec 32902 xrsmulgzz 32985 xrnarchi 33148 rtelextdg2lem 33734 unitssxrge0 33908 xrge0iifcnv 33941 xrge0iifiso 33943 xrge0iifhom 33945 hasheuni 34093 ddemeas 34244 omssubadd 34308 prob01 34421 lfuhgr2 35151 dnizeq0 36508 iccioo01 37360 broucube 37693 asindmre 37742 dvasin 37743 areacirclem1 37747 aks6d1c6lem1 42202 imo72b2 44204 cvgdvgrat 44345 supxrgelem 45375 xrlexaddrp 45390 infxr 45404 infleinflem2 45408 limsup10exlem 45809 limsup10ex 45810 liminf10ex 45811 salexct2 46376 salgencntex 46380 ovn0lem 46602 expnegico01 48549 regt1loggt0 48567 rege1logbrege0 48589 rege1logbzge0 48590 dignnld 48634 eenglngeehlnmlem1 48768 eenglngeehlnmlem2 48769 iooii 48948 i0oii 48950 sepfsepc 48958 seppcld 48960 |
| Copyright terms: Public domain | W3C validator |