Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version |
Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
1xr | ⊢ 1 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11025 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | rexri 11083 | 1 ⊢ 1 ∈ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 1c1 10922 ℝ*cxr 11058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-mulcl 10983 ax-mulrcl 10984 ax-i2m1 10989 ax-1ne0 10990 ax-rrecex 10993 ax-cnre 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-xr 11063 |
This theorem is referenced by: xmulid1 13063 xmulid2 13064 xmulm1 13065 x2times 13083 xov1plusxeqvd 13280 ico01fl0 13589 hashge1 14153 hashgt12el 14186 hashgt12el2 14187 hashgt23el 14188 sgn1 14852 fprodge1 15754 halfleoddlt 16120 isnzr2hash 20584 0ringnnzr 20589 xrsnsgrp 20683 leordtval2 22412 unirnblps 23621 unirnbl 23622 mopnex 23724 dscopn 23778 nmoid 23955 xrsmopn 24024 zdis 24028 metnrmlem1a 24070 metnrmlem1 24071 icopnfcnv 24154 icopnfhmeo 24155 iccpnfcnv 24156 iccpnfhmeo 24157 cncmet 24535 itg2monolem1 24964 itg2monolem3 24966 abelthlem2 25640 abelthlem3 25641 abelthlem5 25643 abelthlem7 25646 abelth 25649 dvlog2lem 25856 dvlog2 25857 logtayl 25864 logtayl2 25866 scvxcvx 26184 pntibndlem1 26786 pntibndlem2 26788 pntibnd 26790 pntlemc 26792 pnt 26811 padicabvf 26828 padicabvcxp 26829 elntg2 27402 nmopun 30425 pjnmopi 30559 xlt2addrd 31130 xdivrec 31250 xrsmulgzz 31336 xrnarchi 31487 unitssxrge0 31899 xrge0iifcnv 31932 xrge0iifiso 31934 xrge0iifhom 31936 hasheuni 32102 ddemeas 32253 omssubadd 32316 prob01 32429 lfuhgr2 33129 dnizeq0 34704 iccioo01 35546 broucube 35859 asindmre 35908 dvasin 35909 areacirclem1 35913 imo72b2 41996 cvgdvgrat 42144 supxrgelem 43104 xrlexaddrp 43119 infxr 43134 infleinflem2 43138 limsup10exlem 43542 limsup10ex 43543 liminf10ex 43544 salexct2 44107 salgencntex 44111 ovn0lem 44333 expnegico01 46103 regt1loggt0 46126 rege1logbrege0 46148 rege1logbzge0 46149 dignnld 46193 eenglngeehlnmlem1 46327 eenglngeehlnmlem2 46328 iooii 46455 i0oii 46457 sepfsepc 46465 seppcld 46467 |
Copyright terms: Public domain | W3C validator |