![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version |
Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
1xr | ⊢ 1 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11258 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | rexri 11316 | 1 ⊢ 1 ∈ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 1c1 11153 ℝ*cxr 11291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulrcl 11215 ax-i2m1 11220 ax-1ne0 11221 ax-rrecex 11224 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-xr 11296 |
This theorem is referenced by: xmulrid 13317 xmullid 13318 xmulm1 13319 x2times 13337 xov1plusxeqvd 13534 ico01fl0 13855 hashge1 14424 hashgt12el 14457 hashgt12el2 14458 hashgt23el 14459 sgn1 15127 fprodge1 16027 halfleoddlt 16395 isnzr2hash 20535 0ringnnzr 20541 xrsnsgrp 21437 leordtval2 23235 unirnblps 24444 unirnbl 24445 mopnex 24547 dscopn 24601 nmoid 24778 xrsmopn 24847 zdis 24851 metnrmlem1a 24893 metnrmlem1 24894 icopnfcnv 24986 icopnfhmeo 24987 iccpnfcnv 24988 iccpnfhmeo 24989 cncmet 25369 itg2monolem1 25799 itg2monolem3 25801 abelthlem2 26490 abelthlem3 26491 abelthlem5 26493 abelthlem7 26496 abelth 26499 dvlog2lem 26708 dvlog2 26709 logtayl 26716 logtayl2 26718 scvxcvx 27043 pntibndlem1 27647 pntibndlem2 27649 pntibnd 27651 pntlemc 27653 pnt 27672 padicabvf 27689 padicabvcxp 27690 elntg2 29014 nmopun 32042 pjnmopi 32176 xlt2addrd 32768 xdivrec 32893 xrsmulgzz 32993 xrnarchi 33173 rtelextdg2lem 33731 unitssxrge0 33860 xrge0iifcnv 33893 xrge0iifiso 33895 xrge0iifhom 33897 hasheuni 34065 ddemeas 34216 omssubadd 34281 prob01 34394 lfuhgr2 35102 dnizeq0 36457 iccioo01 37309 broucube 37640 asindmre 37689 dvasin 37690 areacirclem1 37694 aks6d1c6lem1 42151 imo72b2 44161 cvgdvgrat 44308 supxrgelem 45286 xrlexaddrp 45301 infxr 45316 infleinflem2 45320 limsup10exlem 45727 limsup10ex 45728 liminf10ex 45729 salexct2 46294 salgencntex 46298 ovn0lem 46520 expnegico01 48363 regt1loggt0 48385 rege1logbrege0 48407 rege1logbzge0 48408 dignnld 48452 eenglngeehlnmlem1 48586 eenglngeehlnmlem2 48587 iooii 48713 i0oii 48715 sepfsepc 48723 seppcld 48725 |
Copyright terms: Public domain | W3C validator |