| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1xr | Structured version Visualization version GIF version | ||
| Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1xr | ⊢ 1 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | rexri 11232 | 1 ⊢ 1 ∈ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11069 ℝ*cxr 11207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-xr 11212 |
| This theorem is referenced by: xmulrid 13239 xmullid 13240 xmulm1 13241 x2times 13259 xov1plusxeqvd 13459 ico01fl0 13781 hashge1 14354 hashgt12el 14387 hashgt12el2 14388 hashgt23el 14389 sgn1 15058 fprodge1 15961 halfleoddlt 16332 isnzr2hash 20428 0ringnnzr 20434 xrsnsgrp 21319 leordtval2 23099 unirnblps 24307 unirnbl 24308 mopnex 24407 dscopn 24461 nmoid 24630 xrsmopn 24701 zdis 24705 metnrmlem1a 24747 metnrmlem1 24748 icopnfcnv 24840 icopnfhmeo 24841 iccpnfcnv 24842 iccpnfhmeo 24843 cncmet 25222 itg2monolem1 25651 itg2monolem3 25653 abelthlem2 26342 abelthlem3 26343 abelthlem5 26345 abelthlem7 26348 abelth 26351 dvlog2lem 26561 dvlog2 26562 logtayl 26569 logtayl2 26571 scvxcvx 26896 pntibndlem1 27500 pntibndlem2 27502 pntibnd 27504 pntlemc 27506 pnt 27525 padicabvf 27542 padicabvcxp 27543 elntg2 28912 nmopun 31943 pjnmopi 32077 xlt2addrd 32682 xdivrec 32847 xrsmulgzz 32947 xrnarchi 33138 rtelextdg2lem 33716 unitssxrge0 33890 xrge0iifcnv 33923 xrge0iifiso 33925 xrge0iifhom 33927 hasheuni 34075 ddemeas 34226 omssubadd 34291 prob01 34404 lfuhgr2 35106 dnizeq0 36463 iccioo01 37315 broucube 37648 asindmre 37697 dvasin 37698 areacirclem1 37702 aks6d1c6lem1 42158 imo72b2 44161 cvgdvgrat 44302 supxrgelem 45333 xrlexaddrp 45348 infxr 45363 infleinflem2 45367 limsup10exlem 45770 limsup10ex 45771 liminf10ex 45772 salexct2 46337 salgencntex 46341 ovn0lem 46563 expnegico01 48507 regt1loggt0 48525 rege1logbrege0 48547 rege1logbzge0 48548 dignnld 48592 eenglngeehlnmlem1 48726 eenglngeehlnmlem2 48727 iooii 48906 i0oii 48908 sepfsepc 48916 seppcld 48918 |
| Copyright terms: Public domain | W3C validator |