| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lswco | Structured version Visualization version GIF version | ||
| Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 𝑊 = ∅, (𝐹‘∅) ≠ ∅ and ∅ ∈ 𝐴, because then (lastS‘(𝐹 ∘ 𝑊)) = (lastS‘∅) = ∅ ≠ (𝐹‘∅) = (𝐹(lastS‘𝑊)). (Contributed by AV, 11-Nov-2018.) |
| Ref | Expression |
|---|---|
| lswco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6654 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑊 ∈ Word 𝐴) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 5 | cofunexg 7881 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
| 6 | lsw 14471 | . . 3 ⊢ ((𝐹 ∘ 𝑊) ∈ V → (lastS‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1))) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1))) |
| 8 | lenco 14739 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) | |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) |
| 10 | 9 | fvoveq1d 7368 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1)) = ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1))) |
| 11 | wrdf 14425 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
| 13 | lennncl 14441 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 14 | fzo0end 13658 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 16 | 12, 15 | jca 511 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 17 | 16 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 18 | fvco3 6921 | . . . 4 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(𝑊‘((♯‘𝑊) − 1)))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(𝑊‘((♯‘𝑊) − 1)))) |
| 20 | lsw 14471 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 22 | 21 | eqcomd 2737 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊‘((♯‘𝑊) − 1)) = (lastS‘𝑊)) |
| 23 | 22 | fveq2d 6826 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹‘(𝑊‘((♯‘𝑊) − 1))) = (𝐹‘(lastS‘𝑊))) |
| 24 | 19, 23 | eqtrd 2766 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(lastS‘𝑊))) |
| 25 | 7, 10, 24 | 3eqtrd 2770 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4283 ∘ ccom 5620 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 − cmin 11344 ℕcn 12125 ..^cfzo 13554 ♯chash 14237 Word cword 14420 lastSclsw 14469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 |
| This theorem is referenced by: wrdpmtrlast 33060 |
| Copyright terms: Public domain | W3C validator |