| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lswco | Structured version Visualization version GIF version | ||
| Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 𝑊 = ∅, (𝐹‘∅) ≠ ∅ and ∅ ∈ 𝐴, because then (lastS‘(𝐹 ∘ 𝑊)) = (lastS‘∅) = ∅ ≠ (𝐹‘∅) = (𝐹(lastS‘𝑊)). (Contributed by AV, 11-Nov-2018.) |
| Ref | Expression |
|---|---|
| lswco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6714 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑊 ∈ Word 𝐴) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 5 | cofunexg 7952 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
| 6 | lsw 14587 | . . 3 ⊢ ((𝐹 ∘ 𝑊) ∈ V → (lastS‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1))) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1))) |
| 8 | lenco 14856 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) | |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) |
| 10 | 9 | fvoveq1d 7432 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1)) = ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1))) |
| 11 | wrdf 14541 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
| 13 | lennncl 14557 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 14 | fzo0end 13779 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 16 | 12, 15 | jca 511 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 17 | 16 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 18 | fvco3 6983 | . . . 4 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(𝑊‘((♯‘𝑊) − 1)))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(𝑊‘((♯‘𝑊) − 1)))) |
| 20 | lsw 14587 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 22 | 21 | eqcomd 2742 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊‘((♯‘𝑊) − 1)) = (lastS‘𝑊)) |
| 23 | 22 | fveq2d 6885 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹‘(𝑊‘((♯‘𝑊) − 1))) = (𝐹‘(lastS‘𝑊))) |
| 24 | 19, 23 | eqtrd 2771 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(lastS‘𝑊))) |
| 25 | 7, 10, 24 | 3eqtrd 2775 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 ∘ ccom 5663 Fun wfun 6530 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 − cmin 11471 ℕcn 12245 ..^cfzo 13676 ♯chash 14353 Word cword 14536 lastSclsw 14585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-lsw 14586 |
| This theorem is referenced by: wrdpmtrlast 33109 |
| Copyright terms: Public domain | W3C validator |