| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lswco | Structured version Visualization version GIF version | ||
| Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 𝑊 = ∅, (𝐹‘∅) ≠ ∅ and ∅ ∈ 𝐴, because then (lastS‘(𝐹 ∘ 𝑊)) = (lastS‘∅) = ∅ ≠ (𝐹‘∅) = (𝐹(lastS‘𝑊)). (Contributed by AV, 11-Nov-2018.) |
| Ref | Expression |
|---|---|
| lswco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6705 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑊 ∈ Word 𝐴) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
| 5 | cofunexg 7941 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
| 6 | lsw 14569 | . . 3 ⊢ ((𝐹 ∘ 𝑊) ∈ V → (lastS‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1))) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1))) |
| 8 | lenco 14838 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) | |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) |
| 10 | 9 | fvoveq1d 7421 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘(𝐹 ∘ 𝑊)) − 1)) = ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1))) |
| 11 | wrdf 14524 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
| 13 | lennncl 14539 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 14 | fzo0end 13763 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 16 | 12, 15 | jca 511 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 17 | 16 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 18 | fvco3 6974 | . . . 4 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝐴 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(𝑊‘((♯‘𝑊) − 1)))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(𝑊‘((♯‘𝑊) − 1)))) |
| 20 | lsw 14569 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 22 | 21 | eqcomd 2740 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊‘((♯‘𝑊) − 1)) = (lastS‘𝑊)) |
| 23 | 22 | fveq2d 6876 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹‘(𝑊‘((♯‘𝑊) − 1))) = (𝐹‘(lastS‘𝑊))) |
| 24 | 19, 23 | eqtrd 2769 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((♯‘𝑊) − 1)) = (𝐹‘(lastS‘𝑊))) |
| 25 | 7, 10, 24 | 3eqtrd 2773 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3457 ∅c0 4306 ∘ ccom 5655 Fun wfun 6521 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 − cmin 11458 ℕcn 12232 ..^cfzo 13660 ♯chash 14336 Word cword 14519 lastSclsw 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-fzo 13661 df-hash 14337 df-word 14520 df-lsw 14568 |
| This theorem is referenced by: wrdpmtrlast 33022 |
| Copyright terms: Public domain | W3C validator |