| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnghm2 | Structured version Visualization version GIF version | ||
| Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| psgnghm2.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| psgnghm2.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| psgnghm2.u | ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) |
| Ref | Expression |
|---|---|
| psgnghm2 | ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnghm2.s | . . 3 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 2 | psgnghm2.n | . . 3 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑆 ↾s dom 𝑁) = (𝑆 ↾s dom 𝑁) | |
| 4 | psgnghm2.u | . . 3 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 5 | 1, 2, 3, 4 | psgnghm 21517 | . 2 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ ((𝑆 ↾s dom 𝑁) GrpHom 𝑈)) |
| 6 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 7 | 1, 6 | sygbasnfpfi 19424 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝑥 ∈ (Base‘𝑆)) → dom (𝑥 ∖ I ) ∈ Fin) |
| 8 | 7 | ralrimiva 3124 | . . . . . 6 ⊢ (𝐷 ∈ Fin → ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin) |
| 9 | rabid2 3428 | . . . . . 6 ⊢ ((Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin) | |
| 10 | 8, 9 | sylibr 234 | . . . . 5 ⊢ (𝐷 ∈ Fin → (Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
| 11 | eqid 2731 | . . . . . . 7 ⊢ {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} | |
| 12 | 1, 6, 11, 2 | psgnfn 19413 | . . . . . 6 ⊢ 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} |
| 13 | 12 | fndmi 6585 | . . . . 5 ⊢ dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} |
| 14 | 10, 13 | eqtr4di 2784 | . . . 4 ⊢ (𝐷 ∈ Fin → (Base‘𝑆) = dom 𝑁) |
| 15 | eqimss 3988 | . . . 4 ⊢ ((Base‘𝑆) = dom 𝑁 → (Base‘𝑆) ⊆ dom 𝑁) | |
| 16 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝑆 ∈ V |
| 17 | 2 | fvexi 6836 | . . . . . 6 ⊢ 𝑁 ∈ V |
| 18 | 17 | dmex 7839 | . . . . 5 ⊢ dom 𝑁 ∈ V |
| 19 | 3, 6 | ressid2 17145 | . . . . 5 ⊢ (((Base‘𝑆) ⊆ dom 𝑁 ∧ 𝑆 ∈ V ∧ dom 𝑁 ∈ V) → (𝑆 ↾s dom 𝑁) = 𝑆) |
| 20 | 16, 18, 19 | mp3an23 1455 | . . . 4 ⊢ ((Base‘𝑆) ⊆ dom 𝑁 → (𝑆 ↾s dom 𝑁) = 𝑆) |
| 21 | 14, 15, 20 | 3syl 18 | . . 3 ⊢ (𝐷 ∈ Fin → (𝑆 ↾s dom 𝑁) = 𝑆) |
| 22 | 21 | oveq1d 7361 | . 2 ⊢ (𝐷 ∈ Fin → ((𝑆 ↾s dom 𝑁) GrpHom 𝑈) = (𝑆 GrpHom 𝑈)) |
| 23 | 5, 22 | eleqtrd 2833 | 1 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {cpr 4575 I cid 5508 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 1c1 11007 -cneg 11345 Basecbs 17120 ↾s cress 17141 GrpHom cghm 19124 SymGrpcsymg 19281 pmSgncpsgn 19401 mulGrpcmgp 20058 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-subg 19036 df-ghm 19125 df-gim 19171 df-oppg 19258 df-symg 19282 df-pmtr 19354 df-psgn 19403 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-drng 20646 df-cnfld 21292 |
| This theorem is referenced by: psgninv 21519 psgnco 21520 zrhpsgnmhm 21521 zrhpsgninv 21522 psgnevpmb 21524 psgnodpm 21525 zrhpsgnevpm 21528 zrhpsgnodpm 21529 evpmodpmf1o 21533 mdetralt 22523 psgnid 33066 evpmsubg 33116 altgnsg 33118 |
| Copyright terms: Public domain | W3C validator |