MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm2 Structured version   Visualization version   GIF version

Theorem psgnghm2 20786
Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm2.s 𝑆 = (SymGrp‘𝐷)
psgnghm2.n 𝑁 = (pmSgn‘𝐷)
psgnghm2.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm2 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))

Proof of Theorem psgnghm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psgnghm2.s . . 3 𝑆 = (SymGrp‘𝐷)
2 psgnghm2.n . . 3 𝑁 = (pmSgn‘𝐷)
3 eqid 2738 . . 3 (𝑆s dom 𝑁) = (𝑆s dom 𝑁)
4 psgnghm2.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
51, 2, 3, 4psgnghm 20785 . 2 (𝐷 ∈ Fin → 𝑁 ∈ ((𝑆s dom 𝑁) GrpHom 𝑈))
6 eqid 2738 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
71, 6sygbasnfpfi 19120 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑥 ∈ (Base‘𝑆)) → dom (𝑥 ∖ I ) ∈ Fin)
87ralrimiva 3103 . . . . . 6 (𝐷 ∈ Fin → ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin)
9 rabid2 3314 . . . . . 6 ((Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin)
108, 9sylibr 233 . . . . 5 (𝐷 ∈ Fin → (Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
11 eqid 2738 . . . . . . 7 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
121, 6, 11, 2psgnfn 19109 . . . . . 6 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
1312fndmi 6537 . . . . 5 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
1410, 13eqtr4di 2796 . . . 4 (𝐷 ∈ Fin → (Base‘𝑆) = dom 𝑁)
15 eqimss 3977 . . . 4 ((Base‘𝑆) = dom 𝑁 → (Base‘𝑆) ⊆ dom 𝑁)
161fvexi 6788 . . . . 5 𝑆 ∈ V
172fvexi 6788 . . . . . 6 𝑁 ∈ V
1817dmex 7758 . . . . 5 dom 𝑁 ∈ V
193, 6ressid2 16945 . . . . 5 (((Base‘𝑆) ⊆ dom 𝑁𝑆 ∈ V ∧ dom 𝑁 ∈ V) → (𝑆s dom 𝑁) = 𝑆)
2016, 18, 19mp3an23 1452 . . . 4 ((Base‘𝑆) ⊆ dom 𝑁 → (𝑆s dom 𝑁) = 𝑆)
2114, 15, 203syl 18 . . 3 (𝐷 ∈ Fin → (𝑆s dom 𝑁) = 𝑆)
2221oveq1d 7290 . 2 (𝐷 ∈ Fin → ((𝑆s dom 𝑁) GrpHom 𝑈) = (𝑆 GrpHom 𝑈))
235, 22eleqtrd 2841 1 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  {cpr 4563   I cid 5488  dom cdm 5589  cfv 6433  (class class class)co 7275  Fincfn 8733  1c1 10872  -cneg 11206  Basecbs 16912  s cress 16941   GrpHom cghm 18831  SymGrpcsymg 18974  pmSgncpsgn 19097  mulGrpcmgp 19720  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-subg 18752  df-ghm 18832  df-gim 18875  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-cnfld 20598
This theorem is referenced by:  psgninv  20787  psgnco  20788  zrhpsgnmhm  20789  zrhpsgninv  20790  psgnevpmb  20792  psgnodpm  20793  zrhpsgnevpm  20796  zrhpsgnodpm  20797  evpmodpmf1o  20801  mdetralt  21757  psgnid  31364  evpmsubg  31414  altgnsg  31416
  Copyright terms: Public domain W3C validator