MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm2 Structured version   Visualization version   GIF version

Theorem psgnghm2 20407
Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm2.s 𝑆 = (SymGrp‘𝐷)
psgnghm2.n 𝑁 = (pmSgn‘𝐷)
psgnghm2.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm2 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))

Proof of Theorem psgnghm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psgnghm2.s . . 3 𝑆 = (SymGrp‘𝐷)
2 psgnghm2.n . . 3 𝑁 = (pmSgn‘𝐷)
3 eqid 2795 . . 3 (𝑆s dom 𝑁) = (𝑆s dom 𝑁)
4 psgnghm2.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
51, 2, 3, 4psgnghm 20406 . 2 (𝐷 ∈ Fin → 𝑁 ∈ ((𝑆s dom 𝑁) GrpHom 𝑈))
6 eqid 2795 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
71, 6sygbasnfpfi 18371 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑥 ∈ (Base‘𝑆)) → dom (𝑥 ∖ I ) ∈ Fin)
87ralrimiva 3149 . . . . . 6 (𝐷 ∈ Fin → ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin)
9 rabid2 3340 . . . . . 6 ((Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin)
108, 9sylibr 235 . . . . 5 (𝐷 ∈ Fin → (Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
11 eqid 2795 . . . . . . 7 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
121, 6, 11, 2psgnfn 18360 . . . . . 6 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
13 fndm 6325 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
1412, 13ax-mp 5 . . . . 5 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
1510, 14syl6eqr 2849 . . . 4 (𝐷 ∈ Fin → (Base‘𝑆) = dom 𝑁)
16 eqimss 3944 . . . 4 ((Base‘𝑆) = dom 𝑁 → (Base‘𝑆) ⊆ dom 𝑁)
171fvexi 6552 . . . . 5 𝑆 ∈ V
182fvexi 6552 . . . . . 6 𝑁 ∈ V
1918dmex 7472 . . . . 5 dom 𝑁 ∈ V
203, 6ressid2 16381 . . . . 5 (((Base‘𝑆) ⊆ dom 𝑁𝑆 ∈ V ∧ dom 𝑁 ∈ V) → (𝑆s dom 𝑁) = 𝑆)
2117, 19, 20mp3an23 1445 . . . 4 ((Base‘𝑆) ⊆ dom 𝑁 → (𝑆s dom 𝑁) = 𝑆)
2215, 16, 213syl 18 . . 3 (𝐷 ∈ Fin → (𝑆s dom 𝑁) = 𝑆)
2322oveq1d 7031 . 2 (𝐷 ∈ Fin → ((𝑆s dom 𝑁) GrpHom 𝑈) = (𝑆 GrpHom 𝑈))
245, 23eleqtrd 2885 1 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  wral 3105  {crab 3109  Vcvv 3437  cdif 3856  wss 3859  {cpr 4474   I cid 5347  dom cdm 5443   Fn wfn 6220  cfv 6225  (class class class)co 7016  Fincfn 8357  1c1 10384  -cneg 10718  Basecbs 16312  s cress 16313   GrpHom cghm 18096  SymGrpcsymg 18236  pmSgncpsgn 18348  mulGrpcmgp 18929  fldccnfld 20227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-xor 1497  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-ot 4481  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-word 13708  df-lsw 13761  df-concat 13769  df-s1 13794  df-substr 13839  df-pfx 13869  df-splice 13948  df-reverse 13957  df-s2 14046  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-0g 16544  df-gsum 16545  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-subg 18030  df-ghm 18097  df-gim 18140  df-oppg 18215  df-symg 18237  df-pmtr 18301  df-psgn 18350  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-drng 19194  df-cnfld 20228
This theorem is referenced by:  psgninv  20408  psgnco  20409  zrhpsgnmhm  20410  zrhpsgninv  20411  psgnevpmb  20413  psgnodpm  20414  zrhpsgnevpm  20417  zrhpsgnodpm  20418  evpmodpmf1o  20422  mdetralt  20901  evpmsubg  30426  psgnid  30427  altgnsg  30429
  Copyright terms: Public domain W3C validator