![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsymgefmndeq | Structured version Visualization version GIF version |
Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
Ref | Expression |
---|---|
snsymgefmndeq | ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4000 | . . . . . 6 ⊢ (𝑋 ∈ V → {{⟨𝑋, 𝑋⟩}} ⊆ {{⟨𝑋, 𝑋⟩}}) | |
2 | eqid 2726 | . . . . . . 7 ⊢ (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋}) | |
3 | eqid 2726 | . . . . . . 7 ⊢ (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋})) | |
4 | eqid 2726 | . . . . . . 7 ⊢ {𝑋} = {𝑋} | |
5 | 2, 3, 4 | efmnd1bas 18818 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{⟨𝑋, 𝑋⟩}}) |
6 | eqid 2726 | . . . . . . 7 ⊢ (SymGrp‘{𝑋}) = (SymGrp‘{𝑋}) | |
7 | eqid 2726 | . . . . . . 7 ⊢ (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋})) | |
8 | 6, 7, 4 | symg1bas 19310 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{⟨𝑋, 𝑋⟩}}) |
9 | 1, 5, 8 | 3sstr4d 4024 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋}))) |
10 | fvexd 6900 | . . . . 5 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V) | |
11 | fvexd 6900 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V) | |
12 | 6, 7, 2 | symgressbas 19301 | . . . . . 6 ⊢ (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋}))) |
13 | 12, 3 | ressid2 17186 | . . . . 5 ⊢ (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
14 | 9, 10, 11, 13 | syl3anc 1368 | . . . 4 ⊢ (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
15 | 14 | eqcomd 2732 | . . 3 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})) |
16 | fveq2 6885 | . . . 4 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋})) | |
17 | fveq2 6885 | . . . 4 ⊢ (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋})) | |
18 | 16, 17 | eqeq12d 2742 | . . 3 ⊢ (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))) |
19 | 15, 18 | syl5ibrcom 246 | . 2 ⊢ (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
20 | snprc 4716 | . . . . 5 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
21 | 20 | biimpi 215 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
22 | 21 | eqeq2d 2737 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅)) |
23 | 0symgefmndeq 19313 | . . . 4 ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | |
24 | fveq2 6885 | . . . 4 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅)) | |
25 | fveq2 6885 | . . . 4 ⊢ (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅)) | |
26 | 23, 24, 25 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
27 | 22, 26 | biimtrdi 252 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
28 | 19, 27 | pm2.61i 182 | 1 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 {csn 4623 ⟨cop 4629 ‘cfv 6537 Basecbs 17153 EndoFMndcefmnd 18793 SymGrpcsymg 19286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-tset 17225 df-efmnd 18794 df-symg 19287 |
This theorem is referenced by: symgvalstruct 19316 symgvalstructOLD 19317 |
Copyright terms: Public domain | W3C validator |