| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsymgefmndeq | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| snsymgefmndeq | ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3970 | . . . . . 6 ⊢ (𝑋 ∈ V → {{〈𝑋, 𝑋〉}} ⊆ {{〈𝑋, 𝑋〉}}) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋}) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋})) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ {𝑋} = {𝑋} | |
| 5 | 2, 3, 4 | efmnd1bas 18820 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{〈𝑋, 𝑋〉}}) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (SymGrp‘{𝑋}) = (SymGrp‘{𝑋}) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋})) | |
| 8 | 6, 7, 4 | symg1bas 19321 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{〈𝑋, 𝑋〉}}) |
| 9 | 1, 5, 8 | 3sstr4d 4002 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋}))) |
| 10 | fvexd 6873 | . . . . 5 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V) | |
| 11 | fvexd 6873 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V) | |
| 12 | 6, 7, 2 | symgressbas 19312 | . . . . . 6 ⊢ (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋}))) |
| 13 | 12, 3 | ressid2 17204 | . . . . 5 ⊢ (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
| 14 | 9, 10, 11, 13 | syl3anc 1373 | . . . 4 ⊢ (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
| 15 | 14 | eqcomd 2735 | . . 3 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})) |
| 16 | fveq2 6858 | . . . 4 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋})) | |
| 17 | fveq2 6858 | . . . 4 ⊢ (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋})) | |
| 18 | 16, 17 | eqeq12d 2745 | . . 3 ⊢ (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))) |
| 19 | 15, 18 | syl5ibrcom 247 | . 2 ⊢ (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
| 20 | snprc 4681 | . . . . 5 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
| 21 | 20 | biimpi 216 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
| 22 | 21 | eqeq2d 2740 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅)) |
| 23 | 0symgefmndeq 19324 | . . . 4 ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | |
| 24 | fveq2 6858 | . . . 4 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅)) | |
| 25 | fveq2 6858 | . . . 4 ⊢ (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅)) | |
| 26 | 23, 24, 25 | 3eqtr4a 2790 | . . 3 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| 27 | 22, 26 | biimtrdi 253 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
| 28 | 19, 27 | pm2.61i 182 | 1 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 {csn 4589 〈cop 4595 ‘cfv 6511 Basecbs 17179 EndoFMndcefmnd 18795 SymGrpcsymg 19299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-efmnd 18796 df-symg 19300 |
| This theorem is referenced by: symgvalstruct 19327 |
| Copyright terms: Public domain | W3C validator |