![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsymgefmndeq | Structured version Visualization version GIF version |
Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
Ref | Expression |
---|---|
snsymgefmndeq | ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4005 | . . . . . 6 ⊢ (𝑋 ∈ V → {{⟨𝑋, 𝑋⟩}} ⊆ {{⟨𝑋, 𝑋⟩}}) | |
2 | eqid 2732 | . . . . . . 7 ⊢ (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋}) | |
3 | eqid 2732 | . . . . . . 7 ⊢ (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋})) | |
4 | eqid 2732 | . . . . . . 7 ⊢ {𝑋} = {𝑋} | |
5 | 2, 3, 4 | efmnd1bas 18773 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{⟨𝑋, 𝑋⟩}}) |
6 | eqid 2732 | . . . . . . 7 ⊢ (SymGrp‘{𝑋}) = (SymGrp‘{𝑋}) | |
7 | eqid 2732 | . . . . . . 7 ⊢ (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋})) | |
8 | 6, 7, 4 | symg1bas 19257 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{⟨𝑋, 𝑋⟩}}) |
9 | 1, 5, 8 | 3sstr4d 4029 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋}))) |
10 | fvexd 6906 | . . . . 5 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V) | |
11 | fvexd 6906 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V) | |
12 | 6, 7, 2 | symgressbas 19248 | . . . . . 6 ⊢ (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋}))) |
13 | 12, 3 | ressid2 17176 | . . . . 5 ⊢ (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
14 | 9, 10, 11, 13 | syl3anc 1371 | . . . 4 ⊢ (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
15 | 14 | eqcomd 2738 | . . 3 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})) |
16 | fveq2 6891 | . . . 4 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋})) | |
17 | fveq2 6891 | . . . 4 ⊢ (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋})) | |
18 | 16, 17 | eqeq12d 2748 | . . 3 ⊢ (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))) |
19 | 15, 18 | syl5ibrcom 246 | . 2 ⊢ (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
20 | snprc 4721 | . . . . 5 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
21 | 20 | biimpi 215 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
22 | 21 | eqeq2d 2743 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅)) |
23 | 0symgefmndeq 19260 | . . . 4 ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | |
24 | fveq2 6891 | . . . 4 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅)) | |
25 | fveq2 6891 | . . . 4 ⊢ (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅)) | |
26 | 23, 24, 25 | 3eqtr4a 2798 | . . 3 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
27 | 22, 26 | syl6bi 252 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
28 | 19, 27 | pm2.61i 182 | 1 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 {csn 4628 ⟨cop 4634 ‘cfv 6543 Basecbs 17143 EndoFMndcefmnd 18748 SymGrpcsymg 19233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-tset 17215 df-efmnd 18749 df-symg 19234 |
This theorem is referenced by: symgvalstruct 19263 symgvalstructOLD 19264 |
Copyright terms: Public domain | W3C validator |