MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsymgefmndeq Structured version   Visualization version   GIF version

Theorem snsymgefmndeq 19307
Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.)
Assertion
Ref Expression
snsymgefmndeq (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))

Proof of Theorem snsymgefmndeq
StepHypRef Expression
1 ssidd 3953 . . . . . 6 (𝑋 ∈ V → {{⟨𝑋, 𝑋⟩}} ⊆ {{⟨𝑋, 𝑋⟩}})
2 eqid 2731 . . . . . . 7 (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋})
3 eqid 2731 . . . . . . 7 (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋}))
4 eqid 2731 . . . . . . 7 {𝑋} = {𝑋}
52, 3, 4efmnd1bas 18801 . . . . . 6 (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{⟨𝑋, 𝑋⟩}})
6 eqid 2731 . . . . . . 7 (SymGrp‘{𝑋}) = (SymGrp‘{𝑋})
7 eqid 2731 . . . . . . 7 (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋}))
86, 7, 4symg1bas 19303 . . . . . 6 (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{⟨𝑋, 𝑋⟩}})
91, 5, 83sstr4d 3985 . . . . 5 (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})))
10 fvexd 6837 . . . . 5 (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V)
11 fvexd 6837 . . . . 5 (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V)
126, 7, 2symgressbas 19294 . . . . . 6 (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋})))
1312, 3ressid2 17145 . . . . 5 (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋}))
149, 10, 11, 13syl3anc 1373 . . . 4 (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋}))
1514eqcomd 2737 . . 3 (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))
16 fveq2 6822 . . . 4 (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋}))
17 fveq2 6822 . . . 4 (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋}))
1816, 17eqeq12d 2747 . . 3 (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})))
1915, 18syl5ibrcom 247 . 2 (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)))
20 snprc 4667 . . . . 5 𝑋 ∈ V ↔ {𝑋} = ∅)
2120biimpi 216 . . . 4 𝑋 ∈ V → {𝑋} = ∅)
2221eqeq2d 2742 . . 3 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅))
23 0symgefmndeq 19306 . . . 4 (EndoFMnd‘∅) = (SymGrp‘∅)
24 fveq2 6822 . . . 4 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
25 fveq2 6822 . . . 4 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
2623, 24, 253eqtr4a 2792 . . 3 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
2722, 26biimtrdi 253 . 2 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)))
2819, 27pm2.61i 182 1 (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cop 4579  cfv 6481  Basecbs 17120  EndoFMndcefmnd 18776  SymGrpcsymg 19281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-efmnd 18777  df-symg 19282
This theorem is referenced by:  symgvalstruct  19309
  Copyright terms: Public domain W3C validator