MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsymgefmndeq Structured version   Visualization version   GIF version

Theorem snsymgefmndeq 18515
Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.)
Assertion
Ref Expression
snsymgefmndeq (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))

Proof of Theorem snsymgefmndeq
StepHypRef Expression
1 ssidd 3938 . . . . . 6 (𝑋 ∈ V → {{⟨𝑋, 𝑋⟩}} ⊆ {{⟨𝑋, 𝑋⟩}})
2 eqid 2798 . . . . . . 7 (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋})
3 eqid 2798 . . . . . . 7 (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋}))
4 eqid 2798 . . . . . . 7 {𝑋} = {𝑋}
52, 3, 4efmnd1bas 18050 . . . . . 6 (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{⟨𝑋, 𝑋⟩}})
6 eqid 2798 . . . . . . 7 (SymGrp‘{𝑋}) = (SymGrp‘{𝑋})
7 eqid 2798 . . . . . . 7 (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋}))
86, 7, 4symg1bas 18511 . . . . . 6 (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{⟨𝑋, 𝑋⟩}})
91, 5, 83sstr4d 3962 . . . . 5 (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})))
10 fvexd 6660 . . . . 5 (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V)
11 fvexd 6660 . . . . 5 (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V)
126, 7, 2symgressbas 18502 . . . . . 6 (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋})))
1312, 3ressid2 16544 . . . . 5 (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋}))
149, 10, 11, 13syl3anc 1368 . . . 4 (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋}))
1514eqcomd 2804 . . 3 (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))
16 fveq2 6645 . . . 4 (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋}))
17 fveq2 6645 . . . 4 (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋}))
1816, 17eqeq12d 2814 . . 3 (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})))
1915, 18syl5ibrcom 250 . 2 (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)))
20 snprc 4613 . . . . 5 𝑋 ∈ V ↔ {𝑋} = ∅)
2120biimpi 219 . . . 4 𝑋 ∈ V → {𝑋} = ∅)
2221eqeq2d 2809 . . 3 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅))
23 0symgefmndeq 18514 . . . 4 (EndoFMnd‘∅) = (SymGrp‘∅)
24 fveq2 6645 . . . 4 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
25 fveq2 6645 . . . 4 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
2623, 24, 253eqtr4a 2859 . . 3 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
2722, 26syl6bi 256 . 2 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)))
2819, 27pm2.61i 185 1 (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  c0 4243  {csn 4525  cop 4531  cfv 6324  Basecbs 16475  EndoFMndcefmnd 18025  SymGrpcsymg 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488
This theorem is referenced by:  symgvalstruct  18517
  Copyright terms: Public domain W3C validator