Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsymgefmndeq | Structured version Visualization version GIF version |
Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
Ref | Expression |
---|---|
snsymgefmndeq | ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3940 | . . . . . 6 ⊢ (𝑋 ∈ V → {{〈𝑋, 𝑋〉}} ⊆ {{〈𝑋, 𝑋〉}}) | |
2 | eqid 2738 | . . . . . . 7 ⊢ (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋}) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋})) | |
4 | eqid 2738 | . . . . . . 7 ⊢ {𝑋} = {𝑋} | |
5 | 2, 3, 4 | efmnd1bas 18447 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{〈𝑋, 𝑋〉}}) |
6 | eqid 2738 | . . . . . . 7 ⊢ (SymGrp‘{𝑋}) = (SymGrp‘{𝑋}) | |
7 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋})) | |
8 | 6, 7, 4 | symg1bas 18913 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{〈𝑋, 𝑋〉}}) |
9 | 1, 5, 8 | 3sstr4d 3964 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋}))) |
10 | fvexd 6771 | . . . . 5 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V) | |
11 | fvexd 6771 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V) | |
12 | 6, 7, 2 | symgressbas 18904 | . . . . . 6 ⊢ (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋}))) |
13 | 12, 3 | ressid2 16871 | . . . . 5 ⊢ (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
14 | 9, 10, 11, 13 | syl3anc 1369 | . . . 4 ⊢ (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
15 | 14 | eqcomd 2744 | . . 3 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})) |
16 | fveq2 6756 | . . . 4 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋})) | |
17 | fveq2 6756 | . . . 4 ⊢ (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋})) | |
18 | 16, 17 | eqeq12d 2754 | . . 3 ⊢ (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))) |
19 | 15, 18 | syl5ibrcom 246 | . 2 ⊢ (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
20 | snprc 4650 | . . . . 5 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
21 | 20 | biimpi 215 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
22 | 21 | eqeq2d 2749 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅)) |
23 | 0symgefmndeq 18916 | . . . 4 ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | |
24 | fveq2 6756 | . . . 4 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅)) | |
25 | fveq2 6756 | . . . 4 ⊢ (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅)) | |
26 | 23, 24, 25 | 3eqtr4a 2805 | . . 3 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
27 | 22, 26 | syl6bi 252 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
28 | 19, 27 | pm2.61i 182 | 1 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 ‘cfv 6418 Basecbs 16840 EndoFMndcefmnd 18422 SymGrpcsymg 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 |
This theorem is referenced by: symgvalstruct 18919 symgvalstructOLD 18920 |
Copyright terms: Public domain | W3C validator |