MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsymgefmndeq Structured version   Visualization version   GIF version

Theorem snsymgefmndeq 19002
Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.)
Assertion
Ref Expression
snsymgefmndeq (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))

Proof of Theorem snsymgefmndeq
StepHypRef Expression
1 ssidd 3944 . . . . . 6 (𝑋 ∈ V → {{⟨𝑋, 𝑋⟩}} ⊆ {{⟨𝑋, 𝑋⟩}})
2 eqid 2738 . . . . . . 7 (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋})
3 eqid 2738 . . . . . . 7 (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋}))
4 eqid 2738 . . . . . . 7 {𝑋} = {𝑋}
52, 3, 4efmnd1bas 18532 . . . . . 6 (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{⟨𝑋, 𝑋⟩}})
6 eqid 2738 . . . . . . 7 (SymGrp‘{𝑋}) = (SymGrp‘{𝑋})
7 eqid 2738 . . . . . . 7 (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋}))
86, 7, 4symg1bas 18998 . . . . . 6 (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{⟨𝑋, 𝑋⟩}})
91, 5, 83sstr4d 3968 . . . . 5 (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})))
10 fvexd 6789 . . . . 5 (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V)
11 fvexd 6789 . . . . 5 (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V)
126, 7, 2symgressbas 18989 . . . . . 6 (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋})))
1312, 3ressid2 16945 . . . . 5 (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋}))
149, 10, 11, 13syl3anc 1370 . . . 4 (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋}))
1514eqcomd 2744 . . 3 (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))
16 fveq2 6774 . . . 4 (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋}))
17 fveq2 6774 . . . 4 (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋}))
1816, 17eqeq12d 2754 . . 3 (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})))
1915, 18syl5ibrcom 246 . 2 (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)))
20 snprc 4653 . . . . 5 𝑋 ∈ V ↔ {𝑋} = ∅)
2120biimpi 215 . . . 4 𝑋 ∈ V → {𝑋} = ∅)
2221eqeq2d 2749 . . 3 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅))
23 0symgefmndeq 19001 . . . 4 (EndoFMnd‘∅) = (SymGrp‘∅)
24 fveq2 6774 . . . 4 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
25 fveq2 6774 . . . 4 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
2623, 24, 253eqtr4a 2804 . . 3 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
2722, 26syl6bi 252 . 2 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)))
2819, 27pm2.61i 182 1 (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  c0 4256  {csn 4561  cop 4567  cfv 6433  Basecbs 16912  EndoFMndcefmnd 18507  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975
This theorem is referenced by:  symgvalstruct  19004  symgvalstructOLD  19005
  Copyright terms: Public domain W3C validator