| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsymgefmndeq | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| snsymgefmndeq | ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3987 | . . . . . 6 ⊢ (𝑋 ∈ V → {{〈𝑋, 𝑋〉}} ⊆ {{〈𝑋, 𝑋〉}}) | |
| 2 | eqid 2734 | . . . . . . 7 ⊢ (EndoFMnd‘{𝑋}) = (EndoFMnd‘{𝑋}) | |
| 3 | eqid 2734 | . . . . . . 7 ⊢ (Base‘(EndoFMnd‘{𝑋})) = (Base‘(EndoFMnd‘{𝑋})) | |
| 4 | eqid 2734 | . . . . . . 7 ⊢ {𝑋} = {𝑋} | |
| 5 | 2, 3, 4 | efmnd1bas 18875 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) = {{〈𝑋, 𝑋〉}}) |
| 6 | eqid 2734 | . . . . . . 7 ⊢ (SymGrp‘{𝑋}) = (SymGrp‘{𝑋}) | |
| 7 | eqid 2734 | . . . . . . 7 ⊢ (Base‘(SymGrp‘{𝑋})) = (Base‘(SymGrp‘{𝑋})) | |
| 8 | 6, 7, 4 | symg1bas 19376 | . . . . . 6 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) = {{〈𝑋, 𝑋〉}}) |
| 9 | 1, 5, 8 | 3sstr4d 4019 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋}))) |
| 10 | fvexd 6901 | . . . . 5 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) ∈ V) | |
| 11 | fvexd 6901 | . . . . 5 ⊢ (𝑋 ∈ V → (Base‘(SymGrp‘{𝑋})) ∈ V) | |
| 12 | 6, 7, 2 | symgressbas 19367 | . . . . . 6 ⊢ (SymGrp‘{𝑋}) = ((EndoFMnd‘{𝑋}) ↾s (Base‘(SymGrp‘{𝑋}))) |
| 13 | 12, 3 | ressid2 17256 | . . . . 5 ⊢ (((Base‘(EndoFMnd‘{𝑋})) ⊆ (Base‘(SymGrp‘{𝑋})) ∧ (EndoFMnd‘{𝑋}) ∈ V ∧ (Base‘(SymGrp‘{𝑋})) ∈ V) → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
| 14 | 9, 10, 11, 13 | syl3anc 1372 | . . . 4 ⊢ (𝑋 ∈ V → (SymGrp‘{𝑋}) = (EndoFMnd‘{𝑋})) |
| 15 | 14 | eqcomd 2740 | . . 3 ⊢ (𝑋 ∈ V → (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋})) |
| 16 | fveq2 6886 | . . . 4 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (EndoFMnd‘{𝑋})) | |
| 17 | fveq2 6886 | . . . 4 ⊢ (𝐴 = {𝑋} → (SymGrp‘𝐴) = (SymGrp‘{𝑋})) | |
| 18 | 16, 17 | eqeq12d 2750 | . . 3 ⊢ (𝐴 = {𝑋} → ((EndoFMnd‘𝐴) = (SymGrp‘𝐴) ↔ (EndoFMnd‘{𝑋}) = (SymGrp‘{𝑋}))) |
| 19 | 15, 18 | syl5ibrcom 247 | . 2 ⊢ (𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
| 20 | snprc 4697 | . . . . 5 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
| 21 | 20 | biimpi 216 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
| 22 | 21 | eqeq2d 2745 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} ↔ 𝐴 = ∅)) |
| 23 | 0symgefmndeq 19379 | . . . 4 ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | |
| 24 | fveq2 6886 | . . . 4 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅)) | |
| 25 | fveq2 6886 | . . . 4 ⊢ (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅)) | |
| 26 | 23, 24, 25 | 3eqtr4a 2795 | . . 3 ⊢ (𝐴 = ∅ → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| 27 | 22, 26 | biimtrdi 253 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))) |
| 28 | 19, 27 | pm2.61i 182 | 1 ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 ‘cfv 6541 Basecbs 17229 EndoFMndcefmnd 18850 SymGrpcsymg 19354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-tset 17292 df-efmnd 18851 df-symg 19355 |
| This theorem is referenced by: symgvalstruct 19382 symgvalstructOLD 19383 |
| Copyright terms: Public domain | W3C validator |