| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| ringacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| ringacl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20154 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ringacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18880 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ring 20151 |
| This theorem is referenced by: ringcomlem 20195 ringcom 20196 ringlghm 20228 ringrghm 20229 imasring 20246 qusring2 20250 cntzsubr 20522 srngadd 20767 issrngd 20771 lmodprop2d 20837 prdslmodd 20882 rhmpreimaidl 21194 frobrhm 21492 ip2subdi 21560 psrlmod 21876 mpfind 22021 coe1add 22157 mat1ghm 22377 scmatghm 22427 mdetrlin2 22501 mdetunilem5 22510 cpmatacl 22610 mdegaddle 25986 deg1addle2 26014 deg1add 26015 ply1divex 26049 deg1addlt 33572 dvhlveclem 41109 baerlem3lem1 41708 mendlmod 43185 cznrng 48253 lmod1lem3 48482 |
| Copyright terms: Public domain | W3C validator |