| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| ringacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| ringacl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20158 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ringacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18856 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Grpcgrp 18848 Ringcrg 20153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ring 20155 |
| This theorem is referenced by: ringcomlem 20199 ringcom 20200 ringlghm 20232 ringrghm 20233 imasring 20250 qusring2 20254 cntzsubr 20523 srngadd 20768 issrngd 20772 lmodprop2d 20859 prdslmodd 20904 rhmpreimaidl 21216 frobrhm 21514 ip2subdi 21583 psrlmod 21898 mpfind 22043 coe1add 22179 mat1ghm 22399 scmatghm 22449 mdetrlin2 22523 mdetunilem5 22532 cpmatacl 22632 mdegaddle 26007 deg1addle2 26035 deg1add 26036 ply1divex 26070 deg1addlt 33567 dvhlveclem 41228 baerlem3lem1 41827 mendlmod 43307 cznrng 48386 lmod1lem3 48615 |
| Copyright terms: Public domain | W3C validator |