MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringacl Structured version   Visualization version   GIF version

Theorem ringacl 20094
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringacl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem ringacl
StepHypRef Expression
1 ringgrp 20060 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 ringacl.b . . 3 𝐵 = (Base‘𝑅)
3 ringacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18826 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Grpcgrp 18818  Ringcrg 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-ring 20057
This theorem is referenced by:  ringcomlem  20095  ringcom  20096  ringlghm  20123  ringrghm  20124  imasring  20142  qusring2  20146  cntzsubr  20352  srngadd  20464  issrngd  20468  lmodprop2d  20533  prdslmodd  20579  ip2subdi  21196  psrlmod  21520  mpfind  21669  coe1add  21785  mat1ghm  21984  scmatghm  22034  mdetrlin2  22108  mdetunilem5  22117  cpmatacl  22217  mdegaddle  25591  deg1addle2  25619  deg1add  25620  ply1divex  25653  frobrhm  32377  rhmpreimaidl  32532  dvhlveclem  39974  baerlem3lem1  40573  mendlmod  41925  cznrng  46843  lmod1lem3  47160
  Copyright terms: Public domain W3C validator