| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| ringacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| ringacl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20198 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ringacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18924 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 Ringcrg 20193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ring 20195 |
| This theorem is referenced by: ringcomlem 20239 ringcom 20240 ringlghm 20272 ringrghm 20273 imasring 20290 qusring2 20294 cntzsubr 20566 srngadd 20811 issrngd 20815 lmodprop2d 20881 prdslmodd 20926 rhmpreimaidl 21238 frobrhm 21536 ip2subdi 21604 psrlmod 21920 mpfind 22065 coe1add 22201 mat1ghm 22421 scmatghm 22471 mdetrlin2 22545 mdetunilem5 22554 cpmatacl 22654 mdegaddle 26031 deg1addle2 26059 deg1add 26060 ply1divex 26094 deg1addlt 33609 dvhlveclem 41127 baerlem3lem1 41726 mendlmod 43213 cznrng 48236 lmod1lem3 48465 |
| Copyright terms: Public domain | W3C validator |