MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringacl Structured version   Visualization version   GIF version

Theorem ringacl 20187
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringacl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem ringacl
StepHypRef Expression
1 ringgrp 20147 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 ringacl.b . . 3 𝐵 = (Base‘𝑅)
3 ringacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18873 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-ring 20144
This theorem is referenced by:  ringcomlem  20188  ringcom  20189  ringlghm  20221  ringrghm  20222  imasring  20239  qusring2  20243  cntzsubr  20515  srngadd  20760  issrngd  20764  lmodprop2d  20830  prdslmodd  20875  rhmpreimaidl  21187  frobrhm  21485  ip2subdi  21553  psrlmod  21869  mpfind  22014  coe1add  22150  mat1ghm  22370  scmatghm  22420  mdetrlin2  22494  mdetunilem5  22503  cpmatacl  22603  mdegaddle  25979  deg1addle2  26007  deg1add  26008  ply1divex  26042  deg1addlt  33565  dvhlveclem  41102  baerlem3lem1  41701  mendlmod  43178  cznrng  48249  lmod1lem3  48478
  Copyright terms: Public domain W3C validator