MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringacl Structured version   Visualization version   GIF version

Theorem ringacl 20301
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringacl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem ringacl
StepHypRef Expression
1 ringgrp 20265 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 ringacl.b . . 3 𝐵 = (Base‘𝑅)
3 ringacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18981 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262
This theorem is referenced by:  ringcomlem  20302  ringcom  20303  ringlghm  20335  ringrghm  20336  imasring  20353  qusring2  20357  cntzsubr  20634  srngadd  20874  issrngd  20878  lmodprop2d  20944  prdslmodd  20990  rhmpreimaidl  21310  frobrhm  21617  ip2subdi  21685  psrlmod  22003  mpfind  22154  coe1add  22288  mat1ghm  22510  scmatghm  22560  mdetrlin2  22634  mdetunilem5  22643  cpmatacl  22743  mdegaddle  26133  deg1addle2  26161  deg1add  26162  ply1divex  26196  deg1addlt  33585  dvhlveclem  41065  baerlem3lem1  41664  mendlmod  43150  cznrng  47984  lmod1lem3  48218
  Copyright terms: Public domain W3C validator