MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringacl Structured version   Visualization version   GIF version

Theorem ringacl 20194
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringacl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem ringacl
StepHypRef Expression
1 ringgrp 20154 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 ringacl.b . . 3 𝐵 = (Base‘𝑅)
3 ringacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18880 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-ring 20151
This theorem is referenced by:  ringcomlem  20195  ringcom  20196  ringlghm  20228  ringrghm  20229  imasring  20246  qusring2  20250  cntzsubr  20522  srngadd  20767  issrngd  20771  lmodprop2d  20837  prdslmodd  20882  rhmpreimaidl  21194  frobrhm  21492  ip2subdi  21560  psrlmod  21876  mpfind  22021  coe1add  22157  mat1ghm  22377  scmatghm  22427  mdetrlin2  22501  mdetunilem5  22510  cpmatacl  22610  mdegaddle  25986  deg1addle2  26014  deg1add  26015  ply1divex  26049  deg1addlt  33572  dvhlveclem  41109  baerlem3lem1  41708  mendlmod  43185  cznrng  48253  lmod1lem3  48482
  Copyright terms: Public domain W3C validator