| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| ringacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| ringacl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20157 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ringacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18854 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 Ringcrg 20152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ring 20154 |
| This theorem is referenced by: ringcomlem 20198 ringcom 20199 ringlghm 20231 ringrghm 20232 imasring 20249 qusring2 20253 cntzsubr 20522 srngadd 20767 issrngd 20771 lmodprop2d 20858 prdslmodd 20903 rhmpreimaidl 21215 frobrhm 21513 ip2subdi 21582 psrlmod 21898 mpfind 22043 coe1add 22179 mat1ghm 22399 scmatghm 22449 mdetrlin2 22523 mdetunilem5 22532 cpmatacl 22632 mdegaddle 26007 deg1addle2 26035 deg1add 26036 ply1divex 26070 deg1addlt 33558 dvhlveclem 41153 baerlem3lem1 41752 mendlmod 43228 cznrng 48298 lmod1lem3 48527 |
| Copyright terms: Public domain | W3C validator |