MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringacl Structured version   Visualization version   GIF version

Theorem ringacl 20238
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringacl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem ringacl
StepHypRef Expression
1 ringgrp 20198 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 ringacl.b . . 3 𝐵 = (Base‘𝑅)
3 ringacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18924 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Grpcgrp 18916  Ringcrg 20193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-ring 20195
This theorem is referenced by:  ringcomlem  20239  ringcom  20240  ringlghm  20272  ringrghm  20273  imasring  20290  qusring2  20294  cntzsubr  20566  srngadd  20811  issrngd  20815  lmodprop2d  20881  prdslmodd  20926  rhmpreimaidl  21238  frobrhm  21536  ip2subdi  21604  psrlmod  21920  mpfind  22065  coe1add  22201  mat1ghm  22421  scmatghm  22471  mdetrlin2  22545  mdetunilem5  22554  cpmatacl  22654  mdegaddle  26031  deg1addle2  26059  deg1add  26060  ply1divex  26094  deg1addlt  33609  dvhlveclem  41127  baerlem3lem1  41726  mendlmod  43213  cznrng  48236  lmod1lem3  48465
  Copyright terms: Public domain W3C validator