![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1addle2 | Structured version Visualization version GIF version |
Description: If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1addle.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1addle.p | ⊢ + = (+g‘𝑌) |
deg1addle.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1addle.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1addle2.l1 | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
deg1addle2.l2 | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) |
deg1addle2.l3 | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) |
Ref | Expression |
---|---|
deg1addle2 | ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | deg1addle.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 21769 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Ring) |
5 | deg1addle.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | deg1addle.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
7 | deg1addle.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
8 | deg1addle.p | . . . . 5 ⊢ + = (+g‘𝑌) | |
9 | 7, 8 | ringacl 20094 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 + 𝐺) ∈ 𝐵) |
10 | 4, 5, 6, 9 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
11 | deg1addle.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
12 | 11, 2, 7 | deg1xrcl 25599 | . . 3 ⊢ ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*) |
13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*) |
14 | 11, 2, 7 | deg1xrcl 25599 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈ ℝ*) |
15 | 6, 14 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ*) |
16 | 11, 2, 7 | deg1xrcl 25599 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
17 | 5, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
18 | 15, 17 | ifcld 4574 | . 2 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ∈ ℝ*) |
19 | deg1addle2.l1 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
20 | 2, 11, 1, 7, 8, 5, 6 | deg1addle 25618 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
21 | deg1addle2.l2 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) | |
22 | deg1addle2.l3 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) | |
23 | xrmaxle 13161 | . . . 4 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ (𝐷‘𝐺) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) | |
24 | 17, 15, 19, 23 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) |
25 | 21, 22, 24 | mpbir2and 711 | . 2 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿) |
26 | 13, 18, 19, 20, 25 | xrletrd 13140 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4528 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 ℝ*cxr 11246 ≤ cle 11248 Basecbs 17143 +gcplusg 17196 Ringcrg 20055 Poly1cpl1 21700 deg1 cdg1 25568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-mulg 18950 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-subrg 20316 df-cnfld 20944 df-psr 21461 df-mpl 21463 df-opsr 21465 df-psr1 21703 df-ply1 21705 df-mdeg 25569 df-deg1 25570 |
This theorem is referenced by: ply1degltlss 32662 hbtlem2 41856 |
Copyright terms: Public domain | W3C validator |