MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegaddle Structured version   Visualization version   GIF version

Theorem mdegaddle 25979
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegaddle.b 𝐵 = (Base‘𝑌)
mdegaddle.p + = (+g𝑌)
mdegaddle.f (𝜑𝐹𝐵)
mdegaddle.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegaddle (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))

Proof of Theorem mdegaddle
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . . . 10 𝑌 = (𝐼 mPoly 𝑅)
2 mdegaddle.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
3 eqid 2729 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4 mdegaddle.p . . . . . . . . . 10 + = (+g𝑌)
5 mdegaddle.f . . . . . . . . . 10 (𝜑𝐹𝐵)
6 mdegaddle.g . . . . . . . . . 10 (𝜑𝐺𝐵)
71, 2, 3, 4, 5, 6mpladd 21918 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
87fveq1d 6860 . . . . . . . 8 (𝜑 → ((𝐹 + 𝐺)‘𝑐) = ((𝐹f (+g𝑅)𝐺)‘𝑐))
98adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹f (+g𝑅)𝐺)‘𝑐))
10 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2729 . . . . . . . . . . 11 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
121, 10, 2, 11, 5mplelf 21907 . . . . . . . . . 10 (𝜑𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1312ffnd 6689 . . . . . . . . 9 (𝜑𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1413adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
151, 10, 2, 11, 6mplelf 21907 . . . . . . . . . 10 (𝜑𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615ffnd 6689 . . . . . . . . 9 (𝜑𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1716adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ovex 7420 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
1918rabex 5294 . . . . . . . . 9 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V)
21 simpr 484 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
22 fnfvof 7670 . . . . . . . 8 (((𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ ({𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V ∧ 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})) → ((𝐹f (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2314, 17, 20, 21, 22syl22anc 838 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
249, 23eqtrd 2764 . . . . . 6 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2524adantrr 717 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
26 mdegaddle.d . . . . . . . 8 𝐷 = (𝐼 mDeg 𝑅)
27 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
28 eqid 2729 . . . . . . . 8 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
295adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐹𝐵)
30 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
3126, 1, 2mdegxrcl 25972 . . . . . . . . . . . . 13 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
325, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐹) ∈ ℝ*)
3426, 1, 2mdegxrcl 25972 . . . . . . . . . . . . . 14 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
356, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐺) ∈ ℝ*)
3635, 32ifcld 4535 . . . . . . . . . . . 12 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
3736adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
38 nn0ssre 12446 . . . . . . . . . . . . 13 0 ⊆ ℝ
39 ressxr 11218 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
4038, 39sstri 3956 . . . . . . . . . . . 12 0 ⊆ ℝ*
4111, 28tdeglem1 25963 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
4342ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℕ0)
4440, 43sselid 3944 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*)
4533, 37, 443jca 1128 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
4645adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
47 xrmax1 13135 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
4832, 35, 47syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
4948adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
50 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5149, 50jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
52 xrlelttr 13116 . . . . . . . . 9 (((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
5346, 51, 52sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5426, 1, 2, 27, 11, 28, 29, 30, 53mdeglt 25970 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐹𝑐) = (0g𝑅))
556adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐺𝐵)
5635adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐺) ∈ ℝ*)
5756, 37, 443jca 1128 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
5857adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
59 xrmax2 13136 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6032, 35, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6160adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6261, 50jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
63 xrlelttr 13116 . . . . . . . . 9 (((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
6458, 62, 63sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
6526, 1, 2, 27, 11, 28, 55, 30, 64mdeglt 25970 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐺𝑐) = (0g𝑅))
6654, 65oveq12d 7405 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = ((0g𝑅)(+g𝑅)(0g𝑅)))
67 mdegaddle.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
68 ringgrp 20147 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6967, 68syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
7010, 27ring0cl 20176 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
7167, 70syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
7210, 3, 27grplid 18899 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7369, 71, 72syl2anc 584 . . . . . . 7 (𝜑 → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7473adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7566, 74eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = (0g𝑅))
7625, 75eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))
7776expr 456 . . 3 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
7877ralrimiva 3125 . 2 (𝜑 → ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
79 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
801, 79, 67mplringd 21932 . . . 4 (𝜑𝑌 ∈ Ring)
812, 4ringacl 20187 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
8280, 5, 6, 81syl3anc 1373 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
8326, 1, 2, 27, 11, 28mdegleb 25969 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*) → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8482, 36, 83syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8578, 84mpbird 257 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  ifcif 4488   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  cr 11067  *cxr 11207   < clt 11208  cle 11209  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Grpcgrp 18865  Ringcrg 20142  fldccnfld 21264   mPoly cmpl 21815   mDeg cmdg 25958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-cnfld 21265  df-psr 21818  df-mpl 21820  df-mdeg 25960
This theorem is referenced by:  deg1addle  26006
  Copyright terms: Public domain W3C validator