MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegaddle Structured version   Visualization version   GIF version

Theorem mdegaddle 25239
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegaddle.b 𝐵 = (Base‘𝑌)
mdegaddle.p + = (+g𝑌)
mdegaddle.f (𝜑𝐹𝐵)
mdegaddle.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegaddle (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))

Proof of Theorem mdegaddle
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . . . 10 𝑌 = (𝐼 mPoly 𝑅)
2 mdegaddle.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
3 eqid 2738 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4 mdegaddle.p . . . . . . . . . 10 + = (+g𝑌)
5 mdegaddle.f . . . . . . . . . 10 (𝜑𝐹𝐵)
6 mdegaddle.g . . . . . . . . . 10 (𝜑𝐺𝐵)
71, 2, 3, 4, 5, 6mpladd 21213 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
87fveq1d 6776 . . . . . . . 8 (𝜑 → ((𝐹 + 𝐺)‘𝑐) = ((𝐹f (+g𝑅)𝐺)‘𝑐))
98adantr 481 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹f (+g𝑅)𝐺)‘𝑐))
10 eqid 2738 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2738 . . . . . . . . . . 11 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
121, 10, 2, 11, 5mplelf 21204 . . . . . . . . . 10 (𝜑𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1312ffnd 6601 . . . . . . . . 9 (𝜑𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1413adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
151, 10, 2, 11, 6mplelf 21204 . . . . . . . . . 10 (𝜑𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615ffnd 6601 . . . . . . . . 9 (𝜑𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1716adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ovex 7308 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
1918rabex 5256 . . . . . . . . 9 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V)
21 simpr 485 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
22 fnfvof 7550 . . . . . . . 8 (((𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ ({𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V ∧ 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})) → ((𝐹f (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2314, 17, 20, 21, 22syl22anc 836 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
249, 23eqtrd 2778 . . . . . 6 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2524adantrr 714 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
26 mdegaddle.d . . . . . . . 8 𝐷 = (𝐼 mDeg 𝑅)
27 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
28 eqid 2738 . . . . . . . 8 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
295adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐹𝐵)
30 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
3126, 1, 2mdegxrcl 25232 . . . . . . . . . . . . 13 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
325, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3332adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐹) ∈ ℝ*)
3426, 1, 2mdegxrcl 25232 . . . . . . . . . . . . . 14 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
356, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐺) ∈ ℝ*)
3635, 32ifcld 4505 . . . . . . . . . . . 12 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
3736adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
38 nn0ssre 12237 . . . . . . . . . . . . 13 0 ⊆ ℝ
39 ressxr 11019 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
4038, 39sstri 3930 . . . . . . . . . . . 12 0 ⊆ ℝ*
4111, 28tdeglem1 25220 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
4342ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℕ0)
4440, 43sselid 3919 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*)
4533, 37, 443jca 1127 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
4645adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
47 xrmax1 12909 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
4832, 35, 47syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
4948adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
50 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5149, 50jca 512 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
52 xrlelttr 12890 . . . . . . . . 9 (((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
5346, 51, 52sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5426, 1, 2, 27, 11, 28, 29, 30, 53mdeglt 25230 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐹𝑐) = (0g𝑅))
556adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐺𝐵)
5635adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐺) ∈ ℝ*)
5756, 37, 443jca 1127 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
5857adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
59 xrmax2 12910 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6032, 35, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6160adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6261, 50jca 512 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
63 xrlelttr 12890 . . . . . . . . 9 (((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
6458, 62, 63sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
6526, 1, 2, 27, 11, 28, 55, 30, 64mdeglt 25230 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐺𝑐) = (0g𝑅))
6654, 65oveq12d 7293 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = ((0g𝑅)(+g𝑅)(0g𝑅)))
67 mdegaddle.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
68 ringgrp 19788 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6967, 68syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
7010, 27ring0cl 19808 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
7167, 70syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
7210, 3, 27grplid 18609 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7369, 71, 72syl2anc 584 . . . . . . 7 (𝜑 → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7473adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7566, 74eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = (0g𝑅))
7625, 75eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))
7776expr 457 . . 3 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
7877ralrimiva 3103 . 2 (𝜑 → ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
79 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
801mplring 21224 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
8179, 67, 80syl2anc 584 . . . 4 (𝜑𝑌 ∈ Ring)
822, 4ringacl 19817 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
8381, 5, 6, 82syl3anc 1370 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
8426, 1, 2, 27, 11, 28mdegleb 25229 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*) → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8583, 36, 84syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8678, 85mpbird 256 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  ifcif 4459   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  Fincfn 8733  cr 10870  *cxr 11008   < clt 11009  cle 11010  cn 11973  0cn0 12233  Basecbs 16912  +gcplusg 16962  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  Ringcrg 19783  fldccnfld 20597   mPoly cmpl 21109   mDeg cmdg 25215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-cnfld 20598  df-psr 21112  df-mpl 21114  df-mdeg 25217
This theorem is referenced by:  deg1addle  25266
  Copyright terms: Public domain W3C validator