MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegaddle Structured version   Visualization version   GIF version

Theorem mdegaddle 25439
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegaddle.b 𝐵 = (Base‘𝑌)
mdegaddle.p + = (+g𝑌)
mdegaddle.f (𝜑𝐹𝐵)
mdegaddle.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegaddle (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))

Proof of Theorem mdegaddle
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . . . 10 𝑌 = (𝐼 mPoly 𝑅)
2 mdegaddle.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
3 eqid 2736 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4 mdegaddle.p . . . . . . . . . 10 + = (+g𝑌)
5 mdegaddle.f . . . . . . . . . 10 (𝜑𝐹𝐵)
6 mdegaddle.g . . . . . . . . . 10 (𝜑𝐺𝐵)
71, 2, 3, 4, 5, 6mpladd 21413 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
87fveq1d 6844 . . . . . . . 8 (𝜑 → ((𝐹 + 𝐺)‘𝑐) = ((𝐹f (+g𝑅)𝐺)‘𝑐))
98adantr 481 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹f (+g𝑅)𝐺)‘𝑐))
10 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2736 . . . . . . . . . . 11 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
121, 10, 2, 11, 5mplelf 21404 . . . . . . . . . 10 (𝜑𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1312ffnd 6669 . . . . . . . . 9 (𝜑𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1413adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
151, 10, 2, 11, 6mplelf 21404 . . . . . . . . . 10 (𝜑𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615ffnd 6669 . . . . . . . . 9 (𝜑𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1716adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ovex 7390 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
1918rabex 5289 . . . . . . . . 9 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V)
21 simpr 485 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
22 fnfvof 7634 . . . . . . . 8 (((𝐹 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝐺 Fn {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ ({𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V ∧ 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})) → ((𝐹f (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2314, 17, 20, 21, 22syl22anc 837 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
249, 23eqtrd 2776 . . . . . 6 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2524adantrr 715 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
26 mdegaddle.d . . . . . . . 8 𝐷 = (𝐼 mDeg 𝑅)
27 eqid 2736 . . . . . . . 8 (0g𝑅) = (0g𝑅)
28 eqid 2736 . . . . . . . 8 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
295adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐹𝐵)
30 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
3126, 1, 2mdegxrcl 25432 . . . . . . . . . . . . 13 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
325, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3332adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐹) ∈ ℝ*)
3426, 1, 2mdegxrcl 25432 . . . . . . . . . . . . . 14 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
356, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐺) ∈ ℝ*)
3635, 32ifcld 4532 . . . . . . . . . . . 12 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
3736adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
38 nn0ssre 12417 . . . . . . . . . . . . 13 0 ⊆ ℝ
39 ressxr 11199 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
4038, 39sstri 3953 . . . . . . . . . . . 12 0 ⊆ ℝ*
4111, 28tdeglem1 25420 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
4342ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℕ0)
4440, 43sselid 3942 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*)
4533, 37, 443jca 1128 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
4645adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
47 xrmax1 13094 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
4832, 35, 47syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
4948adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
50 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5149, 50jca 512 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
52 xrlelttr 13075 . . . . . . . . 9 (((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
5346, 51, 52sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5426, 1, 2, 27, 11, 28, 29, 30, 53mdeglt 25430 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐹𝑐) = (0g𝑅))
556adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐺𝐵)
5635adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐺) ∈ ℝ*)
5756, 37, 443jca 1128 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
5857adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
59 xrmax2 13095 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6032, 35, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6160adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6261, 50jca 512 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
63 xrlelttr 13075 . . . . . . . . 9 (((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
6458, 62, 63sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
6526, 1, 2, 27, 11, 28, 55, 30, 64mdeglt 25430 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐺𝑐) = (0g𝑅))
6654, 65oveq12d 7375 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = ((0g𝑅)(+g𝑅)(0g𝑅)))
67 mdegaddle.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
68 ringgrp 19969 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6967, 68syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
7010, 27ring0cl 19990 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
7167, 70syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
7210, 3, 27grplid 18780 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7369, 71, 72syl2anc 584 . . . . . . 7 (𝜑 → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7473adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7566, 74eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = (0g𝑅))
7625, 75eqtrd 2776 . . . 4 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))
7776expr 457 . . 3 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
7877ralrimiva 3143 . 2 (𝜑 → ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
79 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
801mplring 21424 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
8179, 67, 80syl2anc 584 . . . 4 (𝜑𝑌 ∈ Ring)
822, 4ringacl 19999 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
8381, 5, 6, 82syl3anc 1371 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
8426, 1, 2, 27, 11, 28mdegleb 25429 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*) → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8583, 36, 84syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8678, 85mpbird 256 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  ifcif 4486   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  Fincfn 8883  cr 11050  *cxr 11188   < clt 11189  cle 11190  cn 12153  0cn0 12413  Basecbs 17083  +gcplusg 17133  0gc0g 17321   Σg cgsu 17322  Grpcgrp 18748  Ringcrg 19964  fldccnfld 20796   mPoly cmpl 21308   mDeg cmdg 25415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-cnfld 20797  df-psr 21311  df-mpl 21313  df-mdeg 25417
This theorem is referenced by:  deg1addle  25466
  Copyright terms: Public domain W3C validator