| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | frobrhm.1 | . 2
⊢ 𝐵 = (Base‘𝑅) | 
| 2 |  | eqid 2737 | . 2
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 3 |  | eqid 2737 | . 2
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 4 |  | frobrhm.5 | . . 3
⊢ (𝜑 → 𝑅 ∈ CRing) | 
| 5 | 4 | crngringd 20243 | . 2
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 6 |  | frobrhm.4 | . . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑃 ↑ 𝑥)) | 
| 7 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 = (1r‘𝑅)) → 𝑥 = (1r‘𝑅)) | 
| 8 | 7 | oveq2d 7447 | . . . 4
⊢ ((𝜑 ∧ 𝑥 = (1r‘𝑅)) → (𝑃 ↑ 𝑥) = (𝑃 ↑
(1r‘𝑅))) | 
| 9 |  | eqid 2737 | . . . . . . . 8
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 10 | 9 | ringmgp 20236 | . . . . . . 7
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) | 
| 11 | 5, 10 | syl 17 | . . . . . 6
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) | 
| 12 |  | frobrhm.6 | . . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 13 |  | prmnn 16711 | . . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 14 |  | nnnn0 12533 | . . . . . . 7
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) | 
| 15 | 12, 13, 14 | 3syl 18 | . . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℕ0) | 
| 16 | 9, 1 | mgpbas 20142 | . . . . . . 7
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) | 
| 17 |  | frobrhm.3 | . . . . . . 7
⊢  ↑ =
(.g‘(mulGrp‘𝑅)) | 
| 18 | 9, 2 | ringidval 20180 | . . . . . . 7
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) | 
| 19 | 16, 17, 18 | mulgnn0z 19119 | . . . . . 6
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑃 ∈
ℕ0) → (𝑃 ↑
(1r‘𝑅)) =
(1r‘𝑅)) | 
| 20 | 11, 15, 19 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (𝑃 ↑
(1r‘𝑅)) =
(1r‘𝑅)) | 
| 21 | 20 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑥 = (1r‘𝑅)) → (𝑃 ↑
(1r‘𝑅)) =
(1r‘𝑅)) | 
| 22 | 8, 21 | eqtrd 2777 | . . 3
⊢ ((𝜑 ∧ 𝑥 = (1r‘𝑅)) → (𝑃 ↑ 𝑥) = (1r‘𝑅)) | 
| 23 | 1, 2 | ringidcl 20262 | . . . 4
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) | 
| 24 | 5, 23 | syl 17 | . . 3
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) | 
| 25 | 6, 22, 24, 24 | fvmptd2 7024 | . 2
⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = (1r‘𝑅)) | 
| 26 | 9 | crngmgp 20238 | . . . . . 6
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) | 
| 27 | 4, 26 | syl 17 | . . . . 5
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) | 
| 28 | 27 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (mulGrp‘𝑅) ∈ CMnd) | 
| 29 | 15 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → 𝑃 ∈
ℕ0) | 
| 30 |  | simprl 771 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → 𝑖 ∈ 𝐵) | 
| 31 |  | simprr 773 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → 𝑗 ∈ 𝐵) | 
| 32 | 9, 3 | mgpplusg 20141 | . . . . 5
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) | 
| 33 | 16, 17, 32 | mulgnn0di 19843 | . . . 4
⊢
(((mulGrp‘𝑅)
∈ CMnd ∧ (𝑃 ∈
ℕ0 ∧ 𝑖
∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ (𝑖(.r‘𝑅)𝑗)) = ((𝑃 ↑ 𝑖)(.r‘𝑅)(𝑃 ↑ 𝑗))) | 
| 34 | 28, 29, 30, 31, 33 | syl13anc 1374 | . . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ (𝑖(.r‘𝑅)𝑗)) = ((𝑃 ↑ 𝑖)(.r‘𝑅)(𝑃 ↑ 𝑗))) | 
| 35 |  | simpr 484 | . . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = (𝑖(.r‘𝑅)𝑗)) → 𝑥 = (𝑖(.r‘𝑅)𝑗)) | 
| 36 | 35 | oveq2d 7447 | . . . 4
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = (𝑖(.r‘𝑅)𝑗)) → (𝑃 ↑ 𝑥) = (𝑃 ↑ (𝑖(.r‘𝑅)𝑗))) | 
| 37 | 5 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → 𝑅 ∈ Ring) | 
| 38 | 1, 3 | ringcl 20247 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝑖(.r‘𝑅)𝑗) ∈ 𝐵) | 
| 39 | 37, 30, 31, 38 | syl3anc 1373 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑖(.r‘𝑅)𝑗) ∈ 𝐵) | 
| 40 |  | ovexd 7466 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ (𝑖(.r‘𝑅)𝑗)) ∈ V) | 
| 41 | 6, 36, 39, 40 | fvmptd2 7024 | . . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝐹‘(𝑖(.r‘𝑅)𝑗)) = (𝑃 ↑ (𝑖(.r‘𝑅)𝑗))) | 
| 42 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖) | 
| 43 | 42 | oveq2d 7447 | . . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = 𝑖) → (𝑃 ↑ 𝑥) = (𝑃 ↑ 𝑖)) | 
| 44 |  | ovexd 7466 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ 𝑖) ∈ V) | 
| 45 | 6, 43, 30, 44 | fvmptd2 7024 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝐹‘𝑖) = (𝑃 ↑ 𝑖)) | 
| 46 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗) | 
| 47 | 46 | oveq2d 7447 | . . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = 𝑗) → (𝑃 ↑ 𝑥) = (𝑃 ↑ 𝑗)) | 
| 48 |  | ovexd 7466 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ 𝑗) ∈ V) | 
| 49 | 6, 47, 31, 48 | fvmptd2 7024 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝐹‘𝑗) = (𝑃 ↑ 𝑗)) | 
| 50 | 45, 49 | oveq12d 7449 | . . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → ((𝐹‘𝑖)(.r‘𝑅)(𝐹‘𝑗)) = ((𝑃 ↑ 𝑖)(.r‘𝑅)(𝑃 ↑ 𝑗))) | 
| 51 | 34, 41, 50 | 3eqtr4d 2787 | . 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝐹‘(𝑖(.r‘𝑅)𝑗)) = ((𝐹‘𝑖)(.r‘𝑅)(𝐹‘𝑗))) | 
| 52 |  | eqid 2737 | . 2
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 53 | 11 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mnd) | 
| 54 | 15 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑃 ∈
ℕ0) | 
| 55 |  | simpr 484 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 56 | 16, 17, 53, 54, 55 | mulgnn0cld 19113 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑃 ↑ 𝑥) ∈ 𝐵) | 
| 57 | 56, 6 | fmptd 7134 | . 2
⊢ (𝜑 → 𝐹:𝐵⟶𝐵) | 
| 58 |  | frobrhm.2 | . . . 4
⊢ 𝑃 = (chr‘𝑅) | 
| 59 | 4 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → 𝑅 ∈ CRing) | 
| 60 | 12 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → 𝑃 ∈ ℙ) | 
| 61 | 1, 52, 17, 58, 59, 60, 30, 31 | freshmansdream 21593 | . . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ (𝑖(+g‘𝑅)𝑗)) = ((𝑃 ↑ 𝑖)(+g‘𝑅)(𝑃 ↑ 𝑗))) | 
| 62 |  | simpr 484 | . . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = (𝑖(+g‘𝑅)𝑗)) → 𝑥 = (𝑖(+g‘𝑅)𝑗)) | 
| 63 | 62 | oveq2d 7447 | . . . 4
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) ∧ 𝑥 = (𝑖(+g‘𝑅)𝑗)) → (𝑃 ↑ 𝑥) = (𝑃 ↑ (𝑖(+g‘𝑅)𝑗))) | 
| 64 | 1, 52 | ringacl 20275 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝑖(+g‘𝑅)𝑗) ∈ 𝐵) | 
| 65 | 37, 30, 31, 64 | syl3anc 1373 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑖(+g‘𝑅)𝑗) ∈ 𝐵) | 
| 66 |  | ovexd 7466 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝑃 ↑ (𝑖(+g‘𝑅)𝑗)) ∈ V) | 
| 67 | 6, 63, 65, 66 | fvmptd2 7024 | . . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝐹‘(𝑖(+g‘𝑅)𝑗)) = (𝑃 ↑ (𝑖(+g‘𝑅)𝑗))) | 
| 68 | 45, 49 | oveq12d 7449 | . . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → ((𝐹‘𝑖)(+g‘𝑅)(𝐹‘𝑗)) = ((𝑃 ↑ 𝑖)(+g‘𝑅)(𝑃 ↑ 𝑗))) | 
| 69 | 61, 67, 68 | 3eqtr4d 2787 | . 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → (𝐹‘(𝑖(+g‘𝑅)𝑗)) = ((𝐹‘𝑖)(+g‘𝑅)(𝐹‘𝑗))) | 
| 70 | 1, 2, 2, 3, 3, 5, 5, 25, 51, 1, 52, 52, 57, 69 | isrhmd 20488 | 1
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑅)) |