Step | Hyp | Ref
| Expression |
1 | | frobrhm.1 |
. 2
β’ π΅ = (Baseβπ
) |
2 | | eqid 2733 |
. 2
β’
(1rβπ
) = (1rβπ
) |
3 | | eqid 2733 |
. 2
β’
(.rβπ
) = (.rβπ
) |
4 | | frobrhm.5 |
. . 3
β’ (π β π
β CRing) |
5 | 4 | crngringd 19985 |
. 2
β’ (π β π
β Ring) |
6 | | frobrhm.4 |
. . 3
β’ πΉ = (π₯ β π΅ β¦ (π β π₯)) |
7 | | simpr 486 |
. . . . 5
β’ ((π β§ π₯ = (1rβπ
)) β π₯ = (1rβπ
)) |
8 | 7 | oveq2d 7377 |
. . . 4
β’ ((π β§ π₯ = (1rβπ
)) β (π β π₯) = (π β
(1rβπ
))) |
9 | | eqid 2733 |
. . . . . . . 8
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
10 | 9 | ringmgp 19978 |
. . . . . . 7
β’ (π
β Ring β
(mulGrpβπ
) β
Mnd) |
11 | 5, 10 | syl 17 |
. . . . . 6
β’ (π β (mulGrpβπ
) β Mnd) |
12 | | frobrhm.6 |
. . . . . . 7
β’ (π β π β β) |
13 | | prmnn 16558 |
. . . . . . 7
β’ (π β β β π β
β) |
14 | | nnnn0 12428 |
. . . . . . 7
β’ (π β β β π β
β0) |
15 | 12, 13, 14 | 3syl 18 |
. . . . . 6
β’ (π β π β
β0) |
16 | 9, 1 | mgpbas 19910 |
. . . . . . 7
β’ π΅ =
(Baseβ(mulGrpβπ
)) |
17 | | frobrhm.3 |
. . . . . . 7
β’ β =
(.gβ(mulGrpβπ
)) |
18 | 9, 2 | ringidval 19923 |
. . . . . . 7
β’
(1rβπ
) = (0gβ(mulGrpβπ
)) |
19 | 16, 17, 18 | mulgnn0z 18911 |
. . . . . 6
β’
(((mulGrpβπ
)
β Mnd β§ π β
β0) β (π β
(1rβπ
)) =
(1rβπ
)) |
20 | 11, 15, 19 | syl2anc 585 |
. . . . 5
β’ (π β (π β
(1rβπ
)) =
(1rβπ
)) |
21 | 20 | adantr 482 |
. . . 4
β’ ((π β§ π₯ = (1rβπ
)) β (π β
(1rβπ
)) =
(1rβπ
)) |
22 | 8, 21 | eqtrd 2773 |
. . 3
β’ ((π β§ π₯ = (1rβπ
)) β (π β π₯) = (1rβπ
)) |
23 | 1, 2 | ringidcl 19997 |
. . . 4
β’ (π
β Ring β
(1rβπ
)
β π΅) |
24 | 5, 23 | syl 17 |
. . 3
β’ (π β (1rβπ
) β π΅) |
25 | 6, 22, 24, 24 | fvmptd2 6960 |
. 2
β’ (π β (πΉβ(1rβπ
)) = (1rβπ
)) |
26 | 9 | crngmgp 19980 |
. . . . . 6
β’ (π
β CRing β
(mulGrpβπ
) β
CMnd) |
27 | 4, 26 | syl 17 |
. . . . 5
β’ (π β (mulGrpβπ
) β CMnd) |
28 | 27 | adantr 482 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (mulGrpβπ
) β CMnd) |
29 | 15 | adantr 482 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β
β0) |
30 | | simprl 770 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) |
31 | | simprr 772 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) |
32 | 9, 3 | mgpplusg 19908 |
. . . . 5
β’
(.rβπ
) = (+gβ(mulGrpβπ
)) |
33 | 16, 17, 32 | mulgnn0di 19612 |
. . . 4
β’
(((mulGrpβπ
)
β CMnd β§ (π β
β0 β§ π
β π΅ β§ π β π΅)) β (π β (π(.rβπ
)π)) = ((π β π)(.rβπ
)(π β π))) |
34 | 28, 29, 30, 31, 33 | syl13anc 1373 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β (π(.rβπ
)π)) = ((π β π)(.rβπ
)(π β π))) |
35 | | simpr 486 |
. . . . 5
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = (π(.rβπ
)π)) β π₯ = (π(.rβπ
)π)) |
36 | 35 | oveq2d 7377 |
. . . 4
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = (π(.rβπ
)π)) β (π β π₯) = (π β (π(.rβπ
)π))) |
37 | 5 | adantr 482 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π
β Ring) |
38 | 1, 3 | ringcl 19989 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π(.rβπ
)π) β π΅) |
39 | 37, 30, 31, 38 | syl3anc 1372 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(.rβπ
)π) β π΅) |
40 | | ovexd 7396 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β (π(.rβπ
)π)) β V) |
41 | 6, 36, 39, 40 | fvmptd2 6960 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(.rβπ
)π)) = (π β (π(.rβπ
)π))) |
42 | | simpr 486 |
. . . . . 6
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = π) β π₯ = π) |
43 | 42 | oveq2d 7377 |
. . . . 5
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = π) β (π β π₯) = (π β π)) |
44 | | ovexd 7396 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β π) β V) |
45 | 6, 43, 30, 44 | fvmptd2 6960 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = (π β π)) |
46 | | simpr 486 |
. . . . . 6
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = π) β π₯ = π) |
47 | 46 | oveq2d 7377 |
. . . . 5
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = π) β (π β π₯) = (π β π)) |
48 | | ovexd 7396 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β π) β V) |
49 | 6, 47, 31, 48 | fvmptd2 6960 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = (π β π)) |
50 | 45, 49 | oveq12d 7379 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ)(.rβπ
)(πΉβπ)) = ((π β π)(.rβπ
)(π β π))) |
51 | 34, 41, 50 | 3eqtr4d 2783 |
. 2
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(.rβπ
)π)) = ((πΉβπ)(.rβπ
)(πΉβπ))) |
52 | | eqid 2733 |
. 2
β’
(+gβπ
) = (+gβπ
) |
53 | 11 | adantr 482 |
. . . 4
β’ ((π β§ π₯ β π΅) β (mulGrpβπ
) β Mnd) |
54 | 15 | adantr 482 |
. . . 4
β’ ((π β§ π₯ β π΅) β π β
β0) |
55 | | simpr 486 |
. . . 4
β’ ((π β§ π₯ β π΅) β π₯ β π΅) |
56 | 16, 17, 53, 54, 55 | mulgnn0cld 18905 |
. . 3
β’ ((π β§ π₯ β π΅) β (π β π₯) β π΅) |
57 | 56, 6 | fmptd 7066 |
. 2
β’ (π β πΉ:π΅βΆπ΅) |
58 | | frobrhm.2 |
. . . 4
β’ π = (chrβπ
) |
59 | 4 | adantr 482 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β π
β CRing) |
60 | 12 | adantr 482 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β β) |
61 | 1, 52, 17, 58, 59, 60, 30, 31 | freshmansdream 32123 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β (π(+gβπ
)π)) = ((π β π)(+gβπ
)(π β π))) |
62 | | simpr 486 |
. . . . 5
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = (π(+gβπ
)π)) β π₯ = (π(+gβπ
)π)) |
63 | 62 | oveq2d 7377 |
. . . 4
β’ (((π β§ (π β π΅ β§ π β π΅)) β§ π₯ = (π(+gβπ
)π)) β (π β π₯) = (π β (π(+gβπ
)π))) |
64 | 1, 52 | ringacl 20007 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π(+gβπ
)π) β π΅) |
65 | 37, 30, 31, 64 | syl3anc 1372 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(+gβπ
)π) β π΅) |
66 | | ovexd 7396 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β (π(+gβπ
)π)) β V) |
67 | 6, 63, 65, 66 | fvmptd2 6960 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(+gβπ
)π)) = (π β (π(+gβπ
)π))) |
68 | 45, 49 | oveq12d 7379 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ)(+gβπ
)(πΉβπ)) = ((π β π)(+gβπ
)(π β π))) |
69 | 61, 67, 68 | 3eqtr4d 2783 |
. 2
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(+gβπ
)π)) = ((πΉβπ)(+gβπ
)(πΉβπ))) |
70 | 1, 2, 2, 3, 3, 5, 5, 25, 51, 1, 52, 52, 57, 69 | isrhmd 20171 |
1
β’ (π β πΉ β (π
RingHom π
)) |