Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frobrhm Structured version   Visualization version   GIF version

Theorem frobrhm 33075
Description: In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.)
Hypotheses
Ref Expression
frobrhm.1 𝐵 = (Base‘𝑅)
frobrhm.2 𝑃 = (chr‘𝑅)
frobrhm.3 = (.g‘(mulGrp‘𝑅))
frobrhm.4 𝐹 = (𝑥𝐵 ↦ (𝑃 𝑥))
frobrhm.5 (𝜑𝑅 ∈ CRing)
frobrhm.6 (𝜑𝑃 ∈ ℙ)
Assertion
Ref Expression
frobrhm (𝜑𝐹 ∈ (𝑅 RingHom 𝑅))
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝑃   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frobrhm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frobrhm.1 . 2 𝐵 = (Base‘𝑅)
2 eqid 2725 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2725 . 2 (.r𝑅) = (.r𝑅)
4 frobrhm.5 . . 3 (𝜑𝑅 ∈ CRing)
54crngringd 20224 . 2 (𝜑𝑅 ∈ Ring)
6 frobrhm.4 . . 3 𝐹 = (𝑥𝐵 ↦ (𝑃 𝑥))
7 simpr 483 . . . . 5 ((𝜑𝑥 = (1r𝑅)) → 𝑥 = (1r𝑅))
87oveq2d 7439 . . . 4 ((𝜑𝑥 = (1r𝑅)) → (𝑃 𝑥) = (𝑃 (1r𝑅)))
9 eqid 2725 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 20217 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
115, 10syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
12 frobrhm.6 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
13 prmnn 16670 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14 nnnn0 12526 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1512, 13, 143syl 18 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
169, 1mgpbas 20118 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
17 frobrhm.3 . . . . . . 7 = (.g‘(mulGrp‘𝑅))
189, 2ringidval 20161 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1916, 17, 18mulgnn0z 19090 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑃 ∈ ℕ0) → (𝑃 (1r𝑅)) = (1r𝑅))
2011, 15, 19syl2anc 582 . . . . 5 (𝜑 → (𝑃 (1r𝑅)) = (1r𝑅))
2120adantr 479 . . . 4 ((𝜑𝑥 = (1r𝑅)) → (𝑃 (1r𝑅)) = (1r𝑅))
228, 21eqtrd 2765 . . 3 ((𝜑𝑥 = (1r𝑅)) → (𝑃 𝑥) = (1r𝑅))
231, 2ringidcl 20240 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
245, 23syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
256, 22, 24, 24fvmptd2 7016 . 2 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑅))
269crngmgp 20219 . . . . . 6 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
274, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2827adantr 479 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (mulGrp‘𝑅) ∈ CMnd)
2915adantr 479 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑃 ∈ ℕ0)
30 simprl 769 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑖𝐵)
31 simprr 771 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑗𝐵)
329, 3mgpplusg 20116 . . . . 5 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3316, 17, 32mulgnn0di 19818 . . . 4 (((mulGrp‘𝑅) ∈ CMnd ∧ (𝑃 ∈ ℕ0𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
3428, 29, 30, 31, 33syl13anc 1369 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
35 simpr 483 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(.r𝑅)𝑗)) → 𝑥 = (𝑖(.r𝑅)𝑗))
3635oveq2d 7439 . . . 4 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(.r𝑅)𝑗)) → (𝑃 𝑥) = (𝑃 (𝑖(.r𝑅)𝑗)))
375adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑅 ∈ Ring)
381, 3ringcl 20228 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖𝐵𝑗𝐵) → (𝑖(.r𝑅)𝑗) ∈ 𝐵)
3937, 30, 31, 38syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑖(.r𝑅)𝑗) ∈ 𝐵)
40 ovexd 7458 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) ∈ V)
416, 36, 39, 40fvmptd2 7016 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(.r𝑅)𝑗)) = (𝑃 (𝑖(.r𝑅)𝑗)))
42 simpr 483 . . . . . 6 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
4342oveq2d 7439 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑖) → (𝑃 𝑥) = (𝑃 𝑖))
44 ovexd 7458 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 𝑖) ∈ V)
456, 43, 30, 44fvmptd2 7016 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹𝑖) = (𝑃 𝑖))
46 simpr 483 . . . . . 6 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
4746oveq2d 7439 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑗) → (𝑃 𝑥) = (𝑃 𝑗))
48 ovexd 7458 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 𝑗) ∈ V)
496, 47, 31, 48fvmptd2 7016 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹𝑗) = (𝑃 𝑗))
5045, 49oveq12d 7441 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖)(.r𝑅)(𝐹𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
5134, 41, 503eqtr4d 2775 . 2 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(.r𝑅)𝑗)) = ((𝐹𝑖)(.r𝑅)(𝐹𝑗)))
52 eqid 2725 . 2 (+g𝑅) = (+g𝑅)
5311adantr 479 . . . 4 ((𝜑𝑥𝐵) → (mulGrp‘𝑅) ∈ Mnd)
5415adantr 479 . . . 4 ((𝜑𝑥𝐵) → 𝑃 ∈ ℕ0)
55 simpr 483 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
5616, 17, 53, 54, 55mulgnn0cld 19084 . . 3 ((𝜑𝑥𝐵) → (𝑃 𝑥) ∈ 𝐵)
5756, 6fmptd 7127 . 2 (𝜑𝐹:𝐵𝐵)
58 frobrhm.2 . . . 4 𝑃 = (chr‘𝑅)
594adantr 479 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑅 ∈ CRing)
6012adantr 479 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑃 ∈ ℙ)
611, 52, 17, 58, 59, 60, 30, 31freshmansdream 21564 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(+g𝑅)𝑗)) = ((𝑃 𝑖)(+g𝑅)(𝑃 𝑗)))
62 simpr 483 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(+g𝑅)𝑗)) → 𝑥 = (𝑖(+g𝑅)𝑗))
6362oveq2d 7439 . . . 4 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(+g𝑅)𝑗)) → (𝑃 𝑥) = (𝑃 (𝑖(+g𝑅)𝑗)))
641, 52ringacl 20252 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖𝐵𝑗𝐵) → (𝑖(+g𝑅)𝑗) ∈ 𝐵)
6537, 30, 31, 64syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑖(+g𝑅)𝑗) ∈ 𝐵)
66 ovexd 7458 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(+g𝑅)𝑗)) ∈ V)
676, 63, 65, 66fvmptd2 7016 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(+g𝑅)𝑗)) = (𝑃 (𝑖(+g𝑅)𝑗)))
6845, 49oveq12d 7441 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖)(+g𝑅)(𝐹𝑗)) = ((𝑃 𝑖)(+g𝑅)(𝑃 𝑗)))
6961, 67, 683eqtr4d 2775 . 2 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(+g𝑅)𝑗)) = ((𝐹𝑖)(+g𝑅)(𝐹𝑗)))
701, 2, 2, 3, 3, 5, 5, 25, 51, 1, 52, 52, 57, 69isrhmd 20465 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cmpt 5235  cfv 6553  (class class class)co 7423  cn 12259  0cn0 12519  cprime 16667  Basecbs 17208  +gcplusg 17261  .rcmulr 17262  Mndcmnd 18722  .gcmg 19056  CMndccmn 19773  mulGrpcmgp 20112  1rcur 20159  Ringcrg 20211  CRingccrg 20212   RingHom crh 20446  chrcchr 21483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-fsupp 9402  df-sup 9481  df-inf 9482  df-oi 9549  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-n0 12520  df-z 12606  df-uz 12870  df-rp 13024  df-fz 13534  df-fzo 13677  df-fl 13807  df-mod 13885  df-seq 14017  df-exp 14077  df-fac 14286  df-bc 14315  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-dvds 16252  df-gcd 16490  df-prm 16668  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-gsum 17452  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19057  df-ghm 19202  df-cntz 19306  df-od 19521  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-srg 20165  df-ring 20213  df-cring 20214  df-rhm 20449  df-chr 21487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator