Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frobrhm Structured version   Visualization version   GIF version

Theorem frobrhm 31481
Description: In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.)
Hypotheses
Ref Expression
frobrhm.1 𝐵 = (Base‘𝑅)
frobrhm.2 𝑃 = (chr‘𝑅)
frobrhm.3 = (.g‘(mulGrp‘𝑅))
frobrhm.4 𝐹 = (𝑥𝐵 ↦ (𝑃 𝑥))
frobrhm.5 (𝜑𝑅 ∈ CRing)
frobrhm.6 (𝜑𝑃 ∈ ℙ)
Assertion
Ref Expression
frobrhm (𝜑𝐹 ∈ (𝑅 RingHom 𝑅))
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝑃   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frobrhm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frobrhm.1 . 2 𝐵 = (Base‘𝑅)
2 eqid 2740 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2740 . 2 (.r𝑅) = (.r𝑅)
4 frobrhm.5 . . 3 (𝜑𝑅 ∈ CRing)
54crngringd 19794 . 2 (𝜑𝑅 ∈ Ring)
6 frobrhm.4 . . 3 𝐹 = (𝑥𝐵 ↦ (𝑃 𝑥))
7 simpr 485 . . . . 5 ((𝜑𝑥 = (1r𝑅)) → 𝑥 = (1r𝑅))
87oveq2d 7287 . . . 4 ((𝜑𝑥 = (1r𝑅)) → (𝑃 𝑥) = (𝑃 (1r𝑅)))
9 eqid 2740 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 19787 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
115, 10syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
12 frobrhm.6 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
13 prmnn 16377 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14 nnnn0 12240 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1512, 13, 143syl 18 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
169, 1mgpbas 19724 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
17 frobrhm.3 . . . . . . 7 = (.g‘(mulGrp‘𝑅))
189, 2ringidval 19737 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1916, 17, 18mulgnn0z 18728 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑃 ∈ ℕ0) → (𝑃 (1r𝑅)) = (1r𝑅))
2011, 15, 19syl2anc 584 . . . . 5 (𝜑 → (𝑃 (1r𝑅)) = (1r𝑅))
2120adantr 481 . . . 4 ((𝜑𝑥 = (1r𝑅)) → (𝑃 (1r𝑅)) = (1r𝑅))
228, 21eqtrd 2780 . . 3 ((𝜑𝑥 = (1r𝑅)) → (𝑃 𝑥) = (1r𝑅))
231, 2ringidcl 19805 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
245, 23syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
256, 22, 24, 24fvmptd2 6880 . 2 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑅))
269crngmgp 19789 . . . . . 6 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
274, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2827adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (mulGrp‘𝑅) ∈ CMnd)
2915adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑃 ∈ ℕ0)
30 simprl 768 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑖𝐵)
31 simprr 770 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑗𝐵)
329, 3mgpplusg 19722 . . . . 5 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3316, 17, 32mulgnn0di 19425 . . . 4 (((mulGrp‘𝑅) ∈ CMnd ∧ (𝑃 ∈ ℕ0𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
3428, 29, 30, 31, 33syl13anc 1371 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
35 simpr 485 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(.r𝑅)𝑗)) → 𝑥 = (𝑖(.r𝑅)𝑗))
3635oveq2d 7287 . . . 4 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(.r𝑅)𝑗)) → (𝑃 𝑥) = (𝑃 (𝑖(.r𝑅)𝑗)))
375adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑅 ∈ Ring)
381, 3ringcl 19798 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖𝐵𝑗𝐵) → (𝑖(.r𝑅)𝑗) ∈ 𝐵)
3937, 30, 31, 38syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑖(.r𝑅)𝑗) ∈ 𝐵)
40 ovexd 7306 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) ∈ V)
416, 36, 39, 40fvmptd2 6880 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(.r𝑅)𝑗)) = (𝑃 (𝑖(.r𝑅)𝑗)))
42 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
4342oveq2d 7287 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑖) → (𝑃 𝑥) = (𝑃 𝑖))
44 ovexd 7306 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 𝑖) ∈ V)
456, 43, 30, 44fvmptd2 6880 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹𝑖) = (𝑃 𝑖))
46 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
4746oveq2d 7287 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑗) → (𝑃 𝑥) = (𝑃 𝑗))
48 ovexd 7306 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 𝑗) ∈ V)
496, 47, 31, 48fvmptd2 6880 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹𝑗) = (𝑃 𝑗))
5045, 49oveq12d 7289 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖)(.r𝑅)(𝐹𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
5134, 41, 503eqtr4d 2790 . 2 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(.r𝑅)𝑗)) = ((𝐹𝑖)(.r𝑅)(𝐹𝑗)))
52 eqid 2740 . 2 (+g𝑅) = (+g𝑅)
5311adantr 481 . . . 4 ((𝜑𝑥𝐵) → (mulGrp‘𝑅) ∈ Mnd)
5415adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝑃 ∈ ℕ0)
55 simpr 485 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
5616, 17mulgnn0cl 18718 . . . 4 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑃 ∈ ℕ0𝑥𝐵) → (𝑃 𝑥) ∈ 𝐵)
5753, 54, 55, 56syl3anc 1370 . . 3 ((𝜑𝑥𝐵) → (𝑃 𝑥) ∈ 𝐵)
5857, 6fmptd 6985 . 2 (𝜑𝐹:𝐵𝐵)
59 frobrhm.2 . . . 4 𝑃 = (chr‘𝑅)
604adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑅 ∈ CRing)
6112adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑃 ∈ ℙ)
621, 52, 17, 59, 60, 61, 30, 31freshmansdream 31480 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(+g𝑅)𝑗)) = ((𝑃 𝑖)(+g𝑅)(𝑃 𝑗)))
63 simpr 485 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(+g𝑅)𝑗)) → 𝑥 = (𝑖(+g𝑅)𝑗))
6463oveq2d 7287 . . . 4 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(+g𝑅)𝑗)) → (𝑃 𝑥) = (𝑃 (𝑖(+g𝑅)𝑗)))
651, 52ringacl 19815 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖𝐵𝑗𝐵) → (𝑖(+g𝑅)𝑗) ∈ 𝐵)
6637, 30, 31, 65syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑖(+g𝑅)𝑗) ∈ 𝐵)
67 ovexd 7306 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(+g𝑅)𝑗)) ∈ V)
686, 64, 66, 67fvmptd2 6880 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(+g𝑅)𝑗)) = (𝑃 (𝑖(+g𝑅)𝑗)))
6945, 49oveq12d 7289 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖)(+g𝑅)(𝐹𝑗)) = ((𝑃 𝑖)(+g𝑅)(𝑃 𝑗)))
7062, 68, 693eqtr4d 2790 . 2 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(+g𝑅)𝑗)) = ((𝐹𝑖)(+g𝑅)(𝐹𝑗)))
711, 2, 2, 3, 3, 5, 5, 25, 51, 1, 52, 52, 58, 70isrhmd 19971 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  cmpt 5162  cfv 6432  (class class class)co 7271  cn 11973  0cn0 12233  cprime 16374  Basecbs 16910  +gcplusg 16960  .rcmulr 16961  Mndcmnd 18383  .gcmg 18698  CMndccmn 19384  mulGrpcmgp 19718  1rcur 19735  Ringcrg 19781  CRingccrg 19782   RingHom crh 19954  chrcchr 20701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-prm 16375  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-0g 17150  df-gsum 17151  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-ghm 18830  df-cntz 18921  df-od 19134  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-srg 19740  df-ring 19783  df-cring 19784  df-rnghom 19957  df-chr 20705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator