MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frobrhm Structured version   Visualization version   GIF version

Theorem frobrhm 21500
Description: In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.)
Hypotheses
Ref Expression
frobrhm.1 𝐵 = (Base‘𝑅)
frobrhm.2 𝑃 = (chr‘𝑅)
frobrhm.3 = (.g‘(mulGrp‘𝑅))
frobrhm.4 𝐹 = (𝑥𝐵 ↦ (𝑃 𝑥))
frobrhm.5 (𝜑𝑅 ∈ CRing)
frobrhm.6 (𝜑𝑃 ∈ ℙ)
Assertion
Ref Expression
frobrhm (𝜑𝐹 ∈ (𝑅 RingHom 𝑅))
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝑃   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frobrhm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frobrhm.1 . 2 𝐵 = (Base‘𝑅)
2 eqid 2729 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2729 . 2 (.r𝑅) = (.r𝑅)
4 frobrhm.5 . . 3 (𝜑𝑅 ∈ CRing)
54crngringd 20149 . 2 (𝜑𝑅 ∈ Ring)
6 frobrhm.4 . . 3 𝐹 = (𝑥𝐵 ↦ (𝑃 𝑥))
7 simpr 484 . . . . 5 ((𝜑𝑥 = (1r𝑅)) → 𝑥 = (1r𝑅))
87oveq2d 7369 . . . 4 ((𝜑𝑥 = (1r𝑅)) → (𝑃 𝑥) = (𝑃 (1r𝑅)))
9 eqid 2729 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 20142 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
115, 10syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
12 frobrhm.6 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
13 prmnn 16603 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14 nnnn0 12409 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1512, 13, 143syl 18 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
169, 1mgpbas 20048 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
17 frobrhm.3 . . . . . . 7 = (.g‘(mulGrp‘𝑅))
189, 2ringidval 20086 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1916, 17, 18mulgnn0z 18998 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑃 ∈ ℕ0) → (𝑃 (1r𝑅)) = (1r𝑅))
2011, 15, 19syl2anc 584 . . . . 5 (𝜑 → (𝑃 (1r𝑅)) = (1r𝑅))
2120adantr 480 . . . 4 ((𝜑𝑥 = (1r𝑅)) → (𝑃 (1r𝑅)) = (1r𝑅))
228, 21eqtrd 2764 . . 3 ((𝜑𝑥 = (1r𝑅)) → (𝑃 𝑥) = (1r𝑅))
231, 2ringidcl 20168 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
245, 23syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
256, 22, 24, 24fvmptd2 6942 . 2 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑅))
269crngmgp 20144 . . . . . 6 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
274, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2827adantr 480 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (mulGrp‘𝑅) ∈ CMnd)
2915adantr 480 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑃 ∈ ℕ0)
30 simprl 770 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑖𝐵)
31 simprr 772 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑗𝐵)
329, 3mgpplusg 20047 . . . . 5 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3316, 17, 32mulgnn0di 19722 . . . 4 (((mulGrp‘𝑅) ∈ CMnd ∧ (𝑃 ∈ ℕ0𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
3428, 29, 30, 31, 33syl13anc 1374 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
35 simpr 484 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(.r𝑅)𝑗)) → 𝑥 = (𝑖(.r𝑅)𝑗))
3635oveq2d 7369 . . . 4 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(.r𝑅)𝑗)) → (𝑃 𝑥) = (𝑃 (𝑖(.r𝑅)𝑗)))
375adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑅 ∈ Ring)
381, 3ringcl 20153 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖𝐵𝑗𝐵) → (𝑖(.r𝑅)𝑗) ∈ 𝐵)
3937, 30, 31, 38syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑖(.r𝑅)𝑗) ∈ 𝐵)
40 ovexd 7388 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(.r𝑅)𝑗)) ∈ V)
416, 36, 39, 40fvmptd2 6942 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(.r𝑅)𝑗)) = (𝑃 (𝑖(.r𝑅)𝑗)))
42 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
4342oveq2d 7369 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑖) → (𝑃 𝑥) = (𝑃 𝑖))
44 ovexd 7388 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 𝑖) ∈ V)
456, 43, 30, 44fvmptd2 6942 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹𝑖) = (𝑃 𝑖))
46 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
4746oveq2d 7369 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = 𝑗) → (𝑃 𝑥) = (𝑃 𝑗))
48 ovexd 7388 . . . . 5 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 𝑗) ∈ V)
496, 47, 31, 48fvmptd2 6942 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹𝑗) = (𝑃 𝑗))
5045, 49oveq12d 7371 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖)(.r𝑅)(𝐹𝑗)) = ((𝑃 𝑖)(.r𝑅)(𝑃 𝑗)))
5134, 41, 503eqtr4d 2774 . 2 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(.r𝑅)𝑗)) = ((𝐹𝑖)(.r𝑅)(𝐹𝑗)))
52 eqid 2729 . 2 (+g𝑅) = (+g𝑅)
5311adantr 480 . . . 4 ((𝜑𝑥𝐵) → (mulGrp‘𝑅) ∈ Mnd)
5415adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑃 ∈ ℕ0)
55 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
5616, 17, 53, 54, 55mulgnn0cld 18992 . . 3 ((𝜑𝑥𝐵) → (𝑃 𝑥) ∈ 𝐵)
5756, 6fmptd 7052 . 2 (𝜑𝐹:𝐵𝐵)
58 frobrhm.2 . . . 4 𝑃 = (chr‘𝑅)
594adantr 480 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑅 ∈ CRing)
6012adantr 480 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → 𝑃 ∈ ℙ)
611, 52, 17, 58, 59, 60, 30, 31freshmansdream 21499 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(+g𝑅)𝑗)) = ((𝑃 𝑖)(+g𝑅)(𝑃 𝑗)))
62 simpr 484 . . . . 5 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(+g𝑅)𝑗)) → 𝑥 = (𝑖(+g𝑅)𝑗))
6362oveq2d 7369 . . . 4 (((𝜑 ∧ (𝑖𝐵𝑗𝐵)) ∧ 𝑥 = (𝑖(+g𝑅)𝑗)) → (𝑃 𝑥) = (𝑃 (𝑖(+g𝑅)𝑗)))
641, 52ringacl 20181 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖𝐵𝑗𝐵) → (𝑖(+g𝑅)𝑗) ∈ 𝐵)
6537, 30, 31, 64syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑖(+g𝑅)𝑗) ∈ 𝐵)
66 ovexd 7388 . . . 4 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝑃 (𝑖(+g𝑅)𝑗)) ∈ V)
676, 63, 65, 66fvmptd2 6942 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(+g𝑅)𝑗)) = (𝑃 (𝑖(+g𝑅)𝑗)))
6845, 49oveq12d 7371 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖)(+g𝑅)(𝐹𝑗)) = ((𝑃 𝑖)(+g𝑅)(𝑃 𝑗)))
6961, 67, 683eqtr4d 2774 . 2 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → (𝐹‘(𝑖(+g𝑅)𝑗)) = ((𝐹𝑖)(+g𝑅)(𝐹𝑗)))
701, 2, 2, 3, 3, 5, 5, 25, 51, 1, 52, 52, 57, 69isrhmd 20391 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  cn 12146  0cn0 12402  cprime 16600  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Mndcmnd 18626  .gcmg 18964  CMndccmn 19677  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  CRingccrg 20137   RingHom crh 20372  chrcchr 21426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-ghm 19110  df-cntz 19214  df-od 19425  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-rhm 20375  df-chr 21430
This theorem is referenced by:  aks5lem7  42173
  Copyright terms: Public domain W3C validator