Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1add | Structured version Visualization version GIF version |
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
coe1add.p | ⊢ ✚ = (+g‘𝑌) |
coe1add.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
coe1add | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | coe1add.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | eqid 2738 | . . . . . 6 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
4 | coe1add.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | ply1bas 21366 | . . . . 5 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
6 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
7 | coe1add.p | . . . . . 6 ⊢ ✚ = (+g‘𝑌) | |
8 | 2, 1, 7 | ply1plusg 21396 | . . . . 5 ⊢ ✚ = (+g‘(1o mPoly 𝑅)) |
9 | simp2 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) | |
10 | simp3 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
11 | 1, 5, 6, 8, 9, 10 | mpladd 21213 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
12 | 11 | coeq1d 5770 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
13 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 2, 4, 13 | ply1basf 21373 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
15 | 14 | ffnd 6601 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐹 Fn (ℕ0 ↑m 1o)) |
16 | 15 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 Fn (ℕ0 ↑m 1o)) |
17 | 2, 4, 13 | ply1basf 21373 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
18 | 17 | ffnd 6601 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn (ℕ0 ↑m 1o)) |
19 | 18 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 Fn (ℕ0 ↑m 1o)) |
20 | df1o2 8304 | . . . . . 6 ⊢ 1o = {∅} | |
21 | nn0ex 12239 | . . . . . 6 ⊢ ℕ0 ∈ V | |
22 | 0ex 5231 | . . . . . 6 ⊢ ∅ ∈ V | |
23 | eqid 2738 | . . . . . 6 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
24 | 20, 21, 22, 23 | mapsnf1o3 8683 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
25 | f1of 6716 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) | |
26 | 24, 25 | mp1i 13 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) |
27 | ovexd 7310 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (ℕ0 ↑m 1o) ∈ V) | |
28 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
29 | inidm 4152 | . . . 4 ⊢ ((ℕ0 ↑m 1o) ∩ (ℕ0 ↑m 1o)) = (ℕ0 ↑m 1o) | |
30 | 16, 19, 26, 27, 27, 28, 29 | ofco 7556 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
31 | 12, 30 | eqtrd 2778 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
32 | 2 | ply1ring 21419 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
33 | 4, 7 | ringacl 19817 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
34 | 32, 33 | syl3an1 1162 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
35 | eqid 2738 | . . . 4 ⊢ (coe1‘(𝐹 ✚ 𝐺)) = (coe1‘(𝐹 ✚ 𝐺)) | |
36 | 35, 4, 2, 23 | coe1fval2 21381 | . . 3 ⊢ ((𝐹 ✚ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
37 | 34, 36 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
38 | eqid 2738 | . . . . 5 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
39 | 38, 4, 2, 23 | coe1fval2 21381 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
40 | 39 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
41 | eqid 2738 | . . . . 5 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
42 | 41, 4, 2, 23 | coe1fval2 21381 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
43 | 42 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
44 | 40, 43 | oveq12d 7293 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((coe1‘𝐹) ∘f + (coe1‘𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
45 | 31, 37, 44 | 3eqtr4d 2788 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 ↦ cmpt 5157 × cxp 5587 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 1oc1o 8290 ↑m cmap 8615 ℕ0cn0 12233 Basecbs 16912 +gcplusg 16962 Ringcrg 19783 mPoly cmpl 21109 PwSer1cps1 21346 Poly1cpl1 21348 coe1cco1 21349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-psr 21112 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-ply1 21353 df-coe1 21354 |
This theorem is referenced by: coe1addfv 21436 |
Copyright terms: Public domain | W3C validator |