Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1add | Structured version Visualization version GIF version |
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
coe1add.p | ⊢ ✚ = (+g‘𝑌) |
coe1add.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
coe1add | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | coe1add.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | eqid 2738 | . . . . . 6 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
4 | coe1add.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | ply1bas 21376 | . . . . 5 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
6 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
7 | coe1add.p | . . . . . 6 ⊢ ✚ = (+g‘𝑌) | |
8 | 2, 1, 7 | ply1plusg 21406 | . . . . 5 ⊢ ✚ = (+g‘(1o mPoly 𝑅)) |
9 | simp2 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) | |
10 | simp3 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
11 | 1, 5, 6, 8, 9, 10 | mpladd 21223 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
12 | 11 | coeq1d 5763 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
13 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 2, 4, 13 | ply1basf 21383 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
15 | 14 | ffnd 6593 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐹 Fn (ℕ0 ↑m 1o)) |
16 | 15 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 Fn (ℕ0 ↑m 1o)) |
17 | 2, 4, 13 | ply1basf 21383 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
18 | 17 | ffnd 6593 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn (ℕ0 ↑m 1o)) |
19 | 18 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 Fn (ℕ0 ↑m 1o)) |
20 | df1o2 8291 | . . . . . 6 ⊢ 1o = {∅} | |
21 | nn0ex 12249 | . . . . . 6 ⊢ ℕ0 ∈ V | |
22 | 0ex 5229 | . . . . . 6 ⊢ ∅ ∈ V | |
23 | eqid 2738 | . . . . . 6 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
24 | 20, 21, 22, 23 | mapsnf1o3 8670 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
25 | f1of 6708 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) | |
26 | 24, 25 | mp1i 13 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) |
27 | ovexd 7302 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (ℕ0 ↑m 1o) ∈ V) | |
28 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
29 | inidm 4152 | . . . 4 ⊢ ((ℕ0 ↑m 1o) ∩ (ℕ0 ↑m 1o)) = (ℕ0 ↑m 1o) | |
30 | 16, 19, 26, 27, 27, 28, 29 | ofco 7546 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
31 | 12, 30 | eqtrd 2778 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
32 | 2 | ply1ring 21429 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
33 | 4, 7 | ringacl 19827 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
34 | 32, 33 | syl3an1 1162 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
35 | eqid 2738 | . . . 4 ⊢ (coe1‘(𝐹 ✚ 𝐺)) = (coe1‘(𝐹 ✚ 𝐺)) | |
36 | 35, 4, 2, 23 | coe1fval2 21391 | . . 3 ⊢ ((𝐹 ✚ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
37 | 34, 36 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
38 | eqid 2738 | . . . . 5 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
39 | 38, 4, 2, 23 | coe1fval2 21391 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
40 | 39 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
41 | eqid 2738 | . . . . 5 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
42 | 41, 4, 2, 23 | coe1fval2 21391 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
43 | 42 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
44 | 40, 43 | oveq12d 7285 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((coe1‘𝐹) ∘f + (coe1‘𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
45 | 31, 37, 44 | 3eqtr4d 2788 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ∅c0 4256 {csn 4561 ↦ cmpt 5156 × cxp 5582 ∘ ccom 5588 Fn wfn 6421 ⟶wf 6422 –1-1-onto→wf1o 6425 ‘cfv 6426 (class class class)co 7267 ∘f cof 7521 1oc1o 8277 ↑m cmap 8602 ℕ0cn0 12243 Basecbs 16922 +gcplusg 16972 Ringcrg 19793 mPoly cmpl 21119 PwSer1cps1 21356 Poly1cpl1 21358 coe1cco1 21359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-ofr 7524 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-fzo 13393 df-seq 13732 df-hash 14055 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-sca 16988 df-vsca 16989 df-tset 16991 df-ple 16992 df-0g 17162 df-gsum 17163 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-submnd 18441 df-grp 18590 df-minusg 18591 df-mulg 18711 df-subg 18762 df-ghm 18842 df-cntz 18933 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-subrg 20032 df-psr 21122 df-mpl 21124 df-opsr 21126 df-psr1 21361 df-ply1 21363 df-coe1 21364 |
This theorem is referenced by: coe1addfv 21446 |
Copyright terms: Public domain | W3C validator |