![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1add | Structured version Visualization version GIF version |
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
coe1add.p | ⊢ ✚ = (+g‘𝑌) |
coe1add.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
coe1add | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | coe1add.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | eqid 2732 | . . . . . 6 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
4 | coe1add.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | ply1bas 21710 | . . . . 5 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
6 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
7 | coe1add.p | . . . . . 6 ⊢ ✚ = (+g‘𝑌) | |
8 | 2, 1, 7 | ply1plusg 21738 | . . . . 5 ⊢ ✚ = (+g‘(1o mPoly 𝑅)) |
9 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) | |
10 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
11 | 1, 5, 6, 8, 9, 10 | mpladd 21559 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
12 | 11 | coeq1d 5859 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
13 | eqid 2732 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 2, 4, 13 | ply1basf 21717 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
15 | 14 | ffnd 6715 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐹 Fn (ℕ0 ↑m 1o)) |
16 | 15 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 Fn (ℕ0 ↑m 1o)) |
17 | 2, 4, 13 | ply1basf 21717 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
18 | 17 | ffnd 6715 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn (ℕ0 ↑m 1o)) |
19 | 18 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 Fn (ℕ0 ↑m 1o)) |
20 | df1o2 8469 | . . . . . 6 ⊢ 1o = {∅} | |
21 | nn0ex 12474 | . . . . . 6 ⊢ ℕ0 ∈ V | |
22 | 0ex 5306 | . . . . . 6 ⊢ ∅ ∈ V | |
23 | eqid 2732 | . . . . . 6 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
24 | 20, 21, 22, 23 | mapsnf1o3 8885 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
25 | f1of 6830 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) | |
26 | 24, 25 | mp1i 13 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) |
27 | ovexd 7440 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (ℕ0 ↑m 1o) ∈ V) | |
28 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
29 | inidm 4217 | . . . 4 ⊢ ((ℕ0 ↑m 1o) ∩ (ℕ0 ↑m 1o)) = (ℕ0 ↑m 1o) | |
30 | 16, 19, 26, 27, 27, 28, 29 | ofco 7689 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
31 | 12, 30 | eqtrd 2772 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
32 | 2 | ply1ring 21761 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
33 | 4, 7 | ringacl 20088 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
34 | 32, 33 | syl3an1 1163 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
35 | eqid 2732 | . . . 4 ⊢ (coe1‘(𝐹 ✚ 𝐺)) = (coe1‘(𝐹 ✚ 𝐺)) | |
36 | 35, 4, 2, 23 | coe1fval2 21725 | . . 3 ⊢ ((𝐹 ✚ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
37 | 34, 36 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
38 | eqid 2732 | . . . . 5 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
39 | 38, 4, 2, 23 | coe1fval2 21725 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
40 | 39 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
41 | eqid 2732 | . . . . 5 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
42 | 41, 4, 2, 23 | coe1fval2 21725 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
43 | 42 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
44 | 40, 43 | oveq12d 7423 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((coe1‘𝐹) ∘f + (coe1‘𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
45 | 31, 37, 44 | 3eqtr4d 2782 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 {csn 4627 ↦ cmpt 5230 × cxp 5673 ∘ ccom 5679 Fn wfn 6535 ⟶wf 6536 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ∘f cof 7664 1oc1o 8455 ↑m cmap 8816 ℕ0cn0 12468 Basecbs 17140 +gcplusg 17193 Ringcrg 20049 mPoly cmpl 21450 PwSer1cps1 21690 Poly1cpl1 21692 coe1cco1 21693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-subrg 20353 df-psr 21453 df-mpl 21455 df-opsr 21457 df-psr1 21695 df-ply1 21697 df-coe1 21698 |
This theorem is referenced by: coe1addfv 21778 |
Copyright terms: Public domain | W3C validator |