| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1add | Structured version Visualization version GIF version | ||
| Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
| coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
| coe1add.p | ⊢ ✚ = (+g‘𝑌) |
| coe1add.q | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| coe1add | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 2 | coe1add.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
| 3 | coe1add.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | 2, 3 | ply1bas 22105 | . . . . 5 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 5 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 6 | coe1add.p | . . . . . 6 ⊢ ✚ = (+g‘𝑌) | |
| 7 | 2, 1, 6 | ply1plusg 22134 | . . . . 5 ⊢ ✚ = (+g‘(1o mPoly 𝑅)) |
| 8 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) | |
| 9 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
| 10 | 1, 4, 5, 7, 8, 9 | mpladd 21944 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
| 11 | 10 | coeq1d 5801 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | 2, 3, 12 | ply1basf 22113 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
| 14 | 13 | ffnd 6652 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐹 Fn (ℕ0 ↑m 1o)) |
| 15 | 14 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 Fn (ℕ0 ↑m 1o)) |
| 16 | 2, 3, 12 | ply1basf 22113 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
| 17 | 16 | ffnd 6652 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn (ℕ0 ↑m 1o)) |
| 18 | 17 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 Fn (ℕ0 ↑m 1o)) |
| 19 | df1o2 8392 | . . . . . 6 ⊢ 1o = {∅} | |
| 20 | nn0ex 12384 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 21 | 0ex 5245 | . . . . . 6 ⊢ ∅ ∈ V | |
| 22 | eqid 2731 | . . . . . 6 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
| 23 | 19, 20, 21, 22 | mapsnf1o3 8819 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
| 24 | f1of 6763 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) | |
| 25 | 23, 24 | mp1i 13 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) |
| 26 | ovexd 7381 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (ℕ0 ↑m 1o) ∈ V) | |
| 27 | 20 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
| 28 | inidm 4177 | . . . 4 ⊢ ((ℕ0 ↑m 1o) ∩ (ℕ0 ↑m 1o)) = (ℕ0 ↑m 1o) | |
| 29 | 15, 18, 25, 26, 26, 27, 28 | ofco 7635 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
| 30 | 11, 29 | eqtrd 2766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
| 31 | 2 | ply1ring 22158 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
| 32 | 3, 6 | ringacl 20194 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
| 33 | 31, 32 | syl3an1 1163 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
| 34 | eqid 2731 | . . . 4 ⊢ (coe1‘(𝐹 ✚ 𝐺)) = (coe1‘(𝐹 ✚ 𝐺)) | |
| 35 | 34, 3, 2, 22 | coe1fval2 22121 | . . 3 ⊢ ((𝐹 ✚ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 36 | 33, 35 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 37 | eqid 2731 | . . . . 5 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
| 38 | 37, 3, 2, 22 | coe1fval2 22121 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 39 | 38 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 40 | eqid 2731 | . . . . 5 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 41 | 40, 3, 2, 22 | coe1fval2 22121 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 42 | 41 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 43 | 39, 42 | oveq12d 7364 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((coe1‘𝐹) ∘f + (coe1‘𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
| 44 | 30, 36, 43 | 3eqtr4d 2776 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 ↦ cmpt 5172 × cxp 5614 ∘ ccom 5620 Fn wfn 6476 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 1oc1o 8378 ↑m cmap 8750 ℕ0cn0 12378 Basecbs 17117 +gcplusg 17158 Ringcrg 20149 mPoly cmpl 21841 Poly1cpl1 22087 coe1cco1 22088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrng 20459 df-subrg 20483 df-psr 21844 df-mpl 21846 df-opsr 21848 df-psr1 22090 df-ply1 22092 df-coe1 22093 |
| This theorem is referenced by: coe1addfv 22177 |
| Copyright terms: Public domain | W3C validator |