MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1add Structured version   Visualization version   GIF version

Theorem coe1add 20434
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
coe1add.y 𝑌 = (Poly1𝑅)
coe1add.b 𝐵 = (Base‘𝑌)
coe1add.p = (+g𝑌)
coe1add.q + = (+g𝑅)
Assertion
Ref Expression
coe1add ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((coe1𝐹) ∘f + (coe1𝐺)))

Proof of Theorem coe1add
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . 5 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 coe1add.y . . . . . 6 𝑌 = (Poly1𝑅)
3 eqid 2823 . . . . . 6 (PwSer1𝑅) = (PwSer1𝑅)
4 coe1add.b . . . . . 6 𝐵 = (Base‘𝑌)
52, 3, 4ply1bas 20365 . . . . 5 𝐵 = (Base‘(1o mPoly 𝑅))
6 coe1add.q . . . . 5 + = (+g𝑅)
7 coe1add.p . . . . . 6 = (+g𝑌)
82, 1, 7ply1plusg 20395 . . . . 5 = (+g‘(1o mPoly 𝑅))
9 simp2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
10 simp3 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
111, 5, 6, 8, 9, 10mpladd 20224 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹f + 𝐺))
1211coeq1d 5734 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
13 eqid 2823 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
142, 4, 13ply1basf 20372 . . . . . 6 (𝐹𝐵𝐹:(ℕ0m 1o)⟶(Base‘𝑅))
1514ffnd 6517 . . . . 5 (𝐹𝐵𝐹 Fn (ℕ0m 1o))
16153ad2ant2 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 Fn (ℕ0m 1o))
172, 4, 13ply1basf 20372 . . . . . 6 (𝐺𝐵𝐺:(ℕ0m 1o)⟶(Base‘𝑅))
1817ffnd 6517 . . . . 5 (𝐺𝐵𝐺 Fn (ℕ0m 1o))
19183ad2ant3 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 Fn (ℕ0m 1o))
20 df1o2 8118 . . . . . 6 1o = {∅}
21 nn0ex 11906 . . . . . 6 0 ∈ V
22 0ex 5213 . . . . . 6 ∅ ∈ V
23 eqid 2823 . . . . . 6 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))
2420, 21, 22, 23mapsnf1o3 8461 . . . . 5 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ01-1-onto→(ℕ0m 1o)
25 f1of 6617 . . . . 5 ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ01-1-onto→(ℕ0m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0m 1o))
2624, 25mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0m 1o))
27 ovexd 7193 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (ℕ0m 1o) ∈ V)
2821a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ℕ0 ∈ V)
29 inidm 4197 . . . 4 ((ℕ0m 1o) ∩ (ℕ0m 1o)) = (ℕ0m 1o)
3016, 19, 26, 27, 27, 28, 29ofco 7431 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))))
3112, 30eqtrd 2858 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))))
322ply1ring 20418 . . . 4 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
334, 7ringacl 19330 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
3432, 33syl3an1 1159 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
35 eqid 2823 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
3635, 4, 2, 23coe1fval2 20380 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
3734, 36syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
38 eqid 2823 . . . . 5 (coe1𝐹) = (coe1𝐹)
3938, 4, 2, 23coe1fval2 20380 . . . 4 (𝐹𝐵 → (coe1𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
40393ad2ant2 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
41 eqid 2823 . . . . 5 (coe1𝐺) = (coe1𝐺)
4241, 4, 2, 23coe1fval2 20380 . . . 4 (𝐺𝐵 → (coe1𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
43423ad2ant3 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
4440, 43oveq12d 7176 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((coe1𝐹) ∘f + (coe1𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))))
4531, 37, 443eqtr4d 2868 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((coe1𝐹) ∘f + (coe1𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  {csn 4569  cmpt 5148   × cxp 5555  ccom 5561   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  f cof 7409  1oc1o 8097  m cmap 8408  0cn0 11900  Basecbs 16485  +gcplusg 16567  Ringcrg 19299   mPoly cmpl 20135  PwSer1cps1 20345  Poly1cpl1 20347  coe1cco1 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-psr 20138  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-ply1 20352  df-coe1 20353
This theorem is referenced by:  coe1addfv  20435
  Copyright terms: Public domain W3C validator