MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1add Structured version   Visualization version   GIF version

Theorem coe1add 22283
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
coe1add.y 𝑌 = (Poly1𝑅)
coe1add.b 𝐵 = (Base‘𝑌)
coe1add.p = (+g𝑌)
coe1add.q + = (+g𝑅)
Assertion
Ref Expression
coe1add ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((coe1𝐹) ∘f + (coe1𝐺)))

Proof of Theorem coe1add
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 coe1add.y . . . . . 6 𝑌 = (Poly1𝑅)
3 coe1add.b . . . . . 6 𝐵 = (Base‘𝑌)
42, 3ply1bas 22212 . . . . 5 𝐵 = (Base‘(1o mPoly 𝑅))
5 coe1add.q . . . . 5 + = (+g𝑅)
6 coe1add.p . . . . . 6 = (+g𝑌)
72, 1, 6ply1plusg 22241 . . . . 5 = (+g‘(1o mPoly 𝑅))
8 simp2 1136 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
9 simp3 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
101, 4, 5, 7, 8, 9mpladd 22047 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹f + 𝐺))
1110coeq1d 5875 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
12 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
132, 3, 12ply1basf 22220 . . . . . 6 (𝐹𝐵𝐹:(ℕ0m 1o)⟶(Base‘𝑅))
1413ffnd 6738 . . . . 5 (𝐹𝐵𝐹 Fn (ℕ0m 1o))
15143ad2ant2 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 Fn (ℕ0m 1o))
162, 3, 12ply1basf 22220 . . . . . 6 (𝐺𝐵𝐺:(ℕ0m 1o)⟶(Base‘𝑅))
1716ffnd 6738 . . . . 5 (𝐺𝐵𝐺 Fn (ℕ0m 1o))
18173ad2ant3 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 Fn (ℕ0m 1o))
19 df1o2 8512 . . . . . 6 1o = {∅}
20 nn0ex 12530 . . . . . 6 0 ∈ V
21 0ex 5313 . . . . . 6 ∅ ∈ V
22 eqid 2735 . . . . . 6 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))
2319, 20, 21, 22mapsnf1o3 8934 . . . . 5 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ01-1-onto→(ℕ0m 1o)
24 f1of 6849 . . . . 5 ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ01-1-onto→(ℕ0m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0m 1o))
2523, 24mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0m 1o))
26 ovexd 7466 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (ℕ0m 1o) ∈ V)
2720a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ℕ0 ∈ V)
28 inidm 4235 . . . 4 ((ℕ0m 1o) ∩ (ℕ0m 1o)) = (ℕ0m 1o)
2915, 18, 25, 26, 26, 27, 28ofco 7722 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))))
3011, 29eqtrd 2775 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))))
312ply1ring 22265 . . . 4 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
323, 6ringacl 20292 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
3331, 32syl3an1 1162 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
34 eqid 2735 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
3534, 3, 2, 22coe1fval2 22228 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
3633, 35syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
37 eqid 2735 . . . . 5 (coe1𝐹) = (coe1𝐹)
3837, 3, 2, 22coe1fval2 22228 . . . 4 (𝐹𝐵 → (coe1𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
39383ad2ant2 1133 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
40 eqid 2735 . . . . 5 (coe1𝐺) = (coe1𝐺)
4140, 3, 2, 22coe1fval2 22228 . . . 4 (𝐺𝐵 → (coe1𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
42413ad2ant3 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
4339, 42oveq12d 7449 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((coe1𝐹) ∘f + (coe1𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))))
4430, 36, 433eqtr4d 2785 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((coe1𝐹) ∘f + (coe1𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  {csn 4631  cmpt 5231   × cxp 5687  ccom 5693   Fn wfn 6558  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  f cof 7695  1oc1o 8498  m cmap 8865  0cn0 12524  Basecbs 17245  +gcplusg 17298  Ringcrg 20251   mPoly cmpl 21944  Poly1cpl1 22194  coe1cco1 22195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrng 20563  df-subrg 20587  df-psr 21947  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-ply1 22199  df-coe1 22200
This theorem is referenced by:  coe1addfv  22284
  Copyright terms: Public domain W3C validator