![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1add | Structured version Visualization version GIF version |
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
coe1add.p | ⊢ ✚ = (+g‘𝑌) |
coe1add.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
coe1add | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | coe1add.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | eqid 2726 | . . . . . 6 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
4 | coe1add.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | ply1bas 22064 | . . . . 5 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
6 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
7 | coe1add.p | . . . . . 6 ⊢ ✚ = (+g‘𝑌) | |
8 | 2, 1, 7 | ply1plusg 22092 | . . . . 5 ⊢ ✚ = (+g‘(1o mPoly 𝑅)) |
9 | simp2 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) | |
10 | simp3 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
11 | 1, 5, 6, 8, 9, 10 | mpladd 21905 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
12 | 11 | coeq1d 5854 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
13 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 2, 4, 13 | ply1basf 22071 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
15 | 14 | ffnd 6711 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐹 Fn (ℕ0 ↑m 1o)) |
16 | 15 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 Fn (ℕ0 ↑m 1o)) |
17 | 2, 4, 13 | ply1basf 22071 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
18 | 17 | ffnd 6711 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn (ℕ0 ↑m 1o)) |
19 | 18 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 Fn (ℕ0 ↑m 1o)) |
20 | df1o2 8471 | . . . . . 6 ⊢ 1o = {∅} | |
21 | nn0ex 12479 | . . . . . 6 ⊢ ℕ0 ∈ V | |
22 | 0ex 5300 | . . . . . 6 ⊢ ∅ ∈ V | |
23 | eqid 2726 | . . . . . 6 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
24 | 20, 21, 22, 23 | mapsnf1o3 8888 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
25 | f1of 6826 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) | |
26 | 24, 25 | mp1i 13 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})):ℕ0⟶(ℕ0 ↑m 1o)) |
27 | ovexd 7439 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (ℕ0 ↑m 1o) ∈ V) | |
28 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
29 | inidm 4213 | . . . 4 ⊢ ((ℕ0 ↑m 1o) ∩ (ℕ0 ↑m 1o)) = (ℕ0 ↑m 1o) | |
30 | 16, 19, 26, 27, 27, 28, 29 | ofco 7689 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∘f + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
31 | 12, 30 | eqtrd 2766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
32 | 2 | ply1ring 22116 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
33 | 4, 7 | ringacl 20174 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
34 | 32, 33 | syl3an1 1160 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
35 | eqid 2726 | . . . 4 ⊢ (coe1‘(𝐹 ✚ 𝐺)) = (coe1‘(𝐹 ✚ 𝐺)) | |
36 | 35, 4, 2, 23 | coe1fval2 22079 | . . 3 ⊢ ((𝐹 ✚ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
37 | 34, 36 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
38 | eqid 2726 | . . . . 5 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
39 | 38, 4, 2, 23 | coe1fval2 22079 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
40 | 39 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
41 | eqid 2726 | . . . . 5 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
42 | 41, 4, 2, 23 | coe1fval2 22079 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
43 | 42 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
44 | 40, 43 | oveq12d 7422 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((coe1‘𝐹) ∘f + (coe1‘𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) ∘f + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))) |
45 | 31, 37, 44 | 3eqtr4d 2776 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 {csn 4623 ↦ cmpt 5224 × cxp 5667 ∘ ccom 5673 Fn wfn 6531 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7404 ∘f cof 7664 1oc1o 8457 ↑m cmap 8819 ℕ0cn0 12473 Basecbs 17150 +gcplusg 17203 Ringcrg 20135 mPoly cmpl 21795 PwSer1cps1 22044 Poly1cpl1 22046 coe1cco1 22047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14293 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-gsum 17394 df-prds 17399 df-pws 17401 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-mhm 18710 df-submnd 18711 df-grp 18863 df-minusg 18864 df-mulg 18993 df-subg 19047 df-ghm 19136 df-cntz 19230 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-subrng 20443 df-subrg 20468 df-psr 21798 df-mpl 21800 df-opsr 21802 df-psr1 22049 df-ply1 22051 df-coe1 22052 |
This theorem is referenced by: coe1addfv 22134 |
Copyright terms: Public domain | W3C validator |