Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦) = (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦)) |
2 | | simprr 771 |
. . 3
β’ ((((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β§ (π₯ = (π(+gβ(Scalarβπ))π) β§ π¦ = πΌ)) β π¦ = πΌ) |
3 | | simplr 767 |
. . . . . . 7
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β π
β Ring) |
4 | | lmod1.m |
. . . . . . . . 9
β’ π = ({β¨(Baseβndx),
{πΌ}β©,
β¨(+gβndx), {β¨β¨πΌ, πΌβ©, πΌβ©}β©, β¨(Scalarβndx),
π
β©} βͺ {β¨(
Β·π βndx), (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦)β©}) |
5 | 4 | lmodsca 17269 |
. . . . . . . 8
β’ (π
β Ring β π
= (Scalarβπ)) |
6 | 5 | fveq2d 6892 |
. . . . . . 7
β’ (π
β Ring β
(+gβπ
) =
(+gβ(Scalarβπ))) |
7 | 3, 6 | syl 17 |
. . . . . 6
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (+gβπ
) =
(+gβ(Scalarβπ))) |
8 | 7 | eqcomd 2738 |
. . . . 5
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β
(+gβ(Scalarβπ)) = (+gβπ
)) |
9 | 8 | oveqd 7422 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π(+gβ(Scalarβπ))π) = (π(+gβπ
)π)) |
10 | | simprl 769 |
. . . . 5
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β π β (Baseβπ
)) |
11 | | simprr 771 |
. . . . 5
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β π β (Baseβπ
)) |
12 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
13 | | eqid 2732 |
. . . . . 6
β’
(+gβπ
) = (+gβπ
) |
14 | 12, 13 | ringacl 20088 |
. . . . 5
β’ ((π
β Ring β§ π β (Baseβπ
) β§ π β (Baseβπ
)) β (π(+gβπ
)π) β (Baseβπ
)) |
15 | 3, 10, 11, 14 | syl3anc 1371 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π(+gβπ
)π) β (Baseβπ
)) |
16 | 9, 15 | eqeltrd 2833 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π(+gβ(Scalarβπ))π) β (Baseβπ
)) |
17 | | snidg 4661 |
. . . . 5
β’ (πΌ β π β πΌ β {πΌ}) |
18 | 17 | adantr 481 |
. . . 4
β’ ((πΌ β π β§ π
β Ring) β πΌ β {πΌ}) |
19 | 18 | adantr 481 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β πΌ β {πΌ}) |
20 | | simpl 483 |
. . . 4
β’ ((πΌ β π β§ π
β Ring) β πΌ β π) |
21 | 20 | adantr 481 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β πΌ β π) |
22 | 1, 2, 16, 19, 21 | ovmpod 7556 |
. 2
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π(+gβ(Scalarβπ))π)(π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦)πΌ) = πΌ) |
23 | | fvex 6901 |
. . . . . . 7
β’
(Baseβπ
)
β V |
24 | | snex 5430 |
. . . . . . 7
β’ {πΌ} β V |
25 | 23, 24 | pm3.2i 471 |
. . . . . 6
β’
((Baseβπ
)
β V β§ {πΌ} β
V) |
26 | | mpoexga 8060 |
. . . . . 6
β’
(((Baseβπ
)
β V β§ {πΌ} β
V) β (π₯ β
(Baseβπ
), π¦ β {πΌ} β¦ π¦) β V) |
27 | 25, 26 | mp1i 13 |
. . . . 5
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦) β V) |
28 | 4 | lmodvsca 17270 |
. . . . 5
β’ ((π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦) β V β (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦) = ( Β·π
βπ)) |
29 | 27, 28 | syl 17 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦) = ( Β·π
βπ)) |
30 | 29 | eqcomd 2738 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (
Β·π βπ) = (π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦)) |
31 | 30 | oveqd 7422 |
. 2
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π(+gβ(Scalarβπ))π)( Β·π
βπ)πΌ) = ((π(+gβ(Scalarβπ))π)(π₯ β (Baseβπ
), π¦ β {πΌ} β¦ π¦)πΌ)) |
32 | | simprr 771 |
. . . . 5
β’ ((((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β§ (π₯ = π β§ π¦ = πΌ)) β π¦ = πΌ) |
33 | 30, 32, 10, 19, 19 | ovmpod 7556 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π( Β·π
βπ)πΌ) = πΌ) |
34 | | simprr 771 |
. . . . 5
β’ ((((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β§ (π₯ = π β§ π¦ = πΌ)) β π¦ = πΌ) |
35 | 30, 34, 11, 19, 19 | ovmpod 7556 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π( Β·π
βπ)πΌ) = πΌ) |
36 | 33, 35 | oveq12d 7423 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π( Β·π
βπ)πΌ)(+gβπ)(π( Β·π
βπ)πΌ)) = (πΌ(+gβπ)πΌ)) |
37 | | snex 5430 |
. . . . . 6
β’
{β¨β¨πΌ,
πΌβ©, πΌβ©} β V |
38 | 4 | lmodplusg 17268 |
. . . . . 6
β’
({β¨β¨πΌ,
πΌβ©, πΌβ©} β V β {β¨β¨πΌ, πΌβ©, πΌβ©} = (+gβπ)) |
39 | 37, 38 | mp1i 13 |
. . . . 5
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β {β¨β¨πΌ, πΌβ©, πΌβ©} = (+gβπ)) |
40 | 39 | eqcomd 2738 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (+gβπ) = {β¨β¨πΌ, πΌβ©, πΌβ©}) |
41 | 40 | oveqd 7422 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (πΌ(+gβπ)πΌ) = (πΌ{β¨β¨πΌ, πΌβ©, πΌβ©}πΌ)) |
42 | | df-ov 7408 |
. . . 4
β’ (πΌ{β¨β¨πΌ, πΌβ©, πΌβ©}πΌ) = ({β¨β¨πΌ, πΌβ©, πΌβ©}ββ¨πΌ, πΌβ©) |
43 | | opex 5463 |
. . . . . . 7
β’
β¨πΌ, πΌβ© β V |
44 | 20, 43 | jctil 520 |
. . . . . 6
β’ ((πΌ β π β§ π
β Ring) β (β¨πΌ, πΌβ© β V β§ πΌ β π)) |
45 | 44 | adantr 481 |
. . . . 5
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (β¨πΌ, πΌβ© β V β§ πΌ β π)) |
46 | | fvsng 7174 |
. . . . 5
β’
((β¨πΌ, πΌβ© β V β§ πΌ β π) β ({β¨β¨πΌ, πΌβ©, πΌβ©}ββ¨πΌ, πΌβ©) = πΌ) |
47 | 45, 46 | syl 17 |
. . . 4
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ({β¨β¨πΌ, πΌβ©, πΌβ©}ββ¨πΌ, πΌβ©) = πΌ) |
48 | 42, 47 | eqtrid 2784 |
. . 3
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (πΌ{β¨β¨πΌ, πΌβ©, πΌβ©}πΌ) = πΌ) |
49 | 36, 41, 48 | 3eqtrd 2776 |
. 2
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π( Β·π
βπ)πΌ)(+gβπ)(π( Β·π
βπ)πΌ)) = πΌ) |
50 | 22, 31, 49 | 3eqtr4d 2782 |
1
β’ (((πΌ β π β§ π
β Ring) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π(+gβ(Scalarβπ))π)( Β·π
βπ)πΌ) = ((π( Β·π
βπ)πΌ)(+gβπ)(π( Β·π
βπ)πΌ))) |