Proof of Theorem lmod1lem3
Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)) |
2 | | simprr 769 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = (𝑞(+g‘(Scalar‘𝑀))𝑟) ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) |
3 | | simplr 765 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
4 | | lmod1.m |
. . . . . . . . 9
⊢ 𝑀 = ({〈(Base‘ndx),
{𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) |
5 | 4 | lmodsca 16964 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀)) |
6 | 5 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘(Scalar‘𝑀))) |
7 | 3, 6 | syl 17 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (+g‘𝑅) =
(+g‘(Scalar‘𝑀))) |
8 | 7 | eqcomd 2744 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) →
(+g‘(Scalar‘𝑀)) = (+g‘𝑅)) |
9 | 8 | oveqd 7272 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘(Scalar‘𝑀))𝑟) = (𝑞(+g‘𝑅)𝑟)) |
10 | | simprl 767 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑞 ∈ (Base‘𝑅)) |
11 | | simprr 769 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅)) |
12 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
13 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
14 | 12, 13 | ringacl 19732 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑞(+g‘𝑅)𝑟) ∈ (Base‘𝑅)) |
15 | 3, 10, 11, 14 | syl3anc 1369 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘𝑅)𝑟) ∈ (Base‘𝑅)) |
16 | 9, 15 | eqeltrd 2839 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘(Scalar‘𝑀))𝑟) ∈ (Base‘𝑅)) |
17 | | snidg 4592 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
18 | 17 | adantr 480 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ {𝐼}) |
19 | 18 | adantr 480 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼 ∈ {𝐼}) |
20 | | simpl 482 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ 𝑉) |
21 | 20 | adantr 480 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼 ∈ 𝑉) |
22 | 1, 2, 16, 19, 21 | ovmpod 7403 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)𝐼) = 𝐼) |
23 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝑅)
∈ V |
24 | | snex 5349 |
. . . . . . 7
⊢ {𝐼} ∈ V |
25 | 23, 24 | pm3.2i 470 |
. . . . . 6
⊢
((Base‘𝑅)
∈ V ∧ {𝐼} ∈
V) |
26 | | mpoexga 7891 |
. . . . . 6
⊢
(((Base‘𝑅)
∈ V ∧ {𝐼} ∈
V) → (𝑥 ∈
(Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V) |
27 | 25, 26 | mp1i 13 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V) |
28 | 4 | lmodvsca 16965 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠
‘𝑀)) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠
‘𝑀)) |
30 | 29 | eqcomd 2744 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (
·𝑠 ‘𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)) |
31 | 30 | oveqd 7272 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠
‘𝑀)𝐼) = ((𝑞(+g‘(Scalar‘𝑀))𝑟)(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)𝐼)) |
32 | | simprr 769 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = 𝑞 ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) |
33 | 30, 32, 10, 19, 19 | ovmpod 7403 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞( ·𝑠
‘𝑀)𝐼) = 𝐼) |
34 | | simprr 769 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = 𝑟 ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) |
35 | 30, 34, 11, 19, 19 | ovmpod 7403 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠
‘𝑀)𝐼) = 𝐼) |
36 | 33, 35 | oveq12d 7273 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞( ·𝑠
‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠
‘𝑀)𝐼)) = (𝐼(+g‘𝑀)𝐼)) |
37 | | snex 5349 |
. . . . . 6
⊢
{〈〈𝐼,
𝐼〉, 𝐼〉} ∈ V |
38 | 4 | lmodplusg 16963 |
. . . . . 6
⊢
({〈〈𝐼,
𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
39 | 37, 38 | mp1i 13 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
40 | 39 | eqcomd 2744 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (+g‘𝑀) = {〈〈𝐼, 𝐼〉, 𝐼〉}) |
41 | 40 | oveqd 7272 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝐼(+g‘𝑀)𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) |
42 | | df-ov 7258 |
. . . 4
⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) |
43 | | opex 5373 |
. . . . . . 7
⊢
〈𝐼, 𝐼〉 ∈ V |
44 | 20, 43 | jctil 519 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉)) |
45 | 44 | adantr 480 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉)) |
46 | | fvsng 7034 |
. . . . 5
⊢
((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
47 | 45, 46 | syl 17 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
48 | 42, 47 | syl5eq 2791 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
49 | 36, 41, 48 | 3eqtrd 2782 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞( ·𝑠
‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠
‘𝑀)𝐼)) = 𝐼) |
50 | 22, 31, 49 | 3eqtr4d 2788 |
1
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠
‘𝑀)𝐼) = ((𝑞( ·𝑠
‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠
‘𝑀)𝐼))) |