![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidss | Structured version Visualization version GIF version |
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ringidss.g | ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) |
ringidss.b | ⊢ 𝐵 = (Base‘𝑅) |
ringidss.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidss | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . 2 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2797 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2797 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
4 | simp3 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 ∈ 𝐴) | |
5 | ringidss.g | . . . . 5 ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) | |
6 | eqid 2797 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
7 | ringidss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 6, 7 | mgpbas 18939 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
9 | 5, 8 | ressbas2 16388 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑀)) |
10 | 9 | 3ad2ant2 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 = (Base‘𝑀)) |
11 | 4, 10 | eleqtrd 2887 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 ∈ (Base‘𝑀)) |
12 | simp2 1130 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 ⊆ 𝐵) | |
13 | 10, 12 | eqsstrrd 3933 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → (Base‘𝑀) ⊆ 𝐵) |
14 | 13 | sselda 3895 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦 ∈ 𝐵) |
15 | fvex 6558 | . . . . . . . 8 ⊢ (Base‘𝑀) ∈ V | |
16 | 10, 15 | syl6eqel 2893 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 ∈ V) |
17 | eqid 2797 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 6, 17 | mgpplusg 18937 | . . . . . . . 8 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
19 | 5, 18 | ressplusg 16445 | . . . . . . 7 ⊢ (𝐴 ∈ V → (.r‘𝑅) = (+g‘𝑀)) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → (.r‘𝑅) = (+g‘𝑀)) |
21 | 20 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (.r‘𝑅) = (+g‘𝑀)) |
22 | 21 | oveqd 7040 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = ( 1 (+g‘𝑀)𝑦)) |
23 | ringidss.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
24 | 7, 17, 23 | ringlidm 19015 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = 𝑦) |
25 | 24 | 3ad2antl1 1178 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = 𝑦) |
26 | 22, 25 | eqtr3d 2835 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (+g‘𝑀)𝑦) = 𝑦) |
27 | 14, 26 | syldan 591 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g‘𝑀)𝑦) = 𝑦) |
28 | 21 | oveqd 7040 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = (𝑦(+g‘𝑀) 1 )) |
29 | 7, 17, 23 | ringridm 19016 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = 𝑦) |
30 | 29 | 3ad2antl1 1178 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = 𝑦) |
31 | 28, 30 | eqtr3d 2835 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑀) 1 ) = 𝑦) |
32 | 14, 31 | syldan 591 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g‘𝑀) 1 ) = 𝑦) |
33 | 1, 2, 3, 11, 27, 32 | ismgmid2 17710 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 Vcvv 3440 ⊆ wss 3865 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 ↾s cress 16317 +gcplusg 16398 .rcmulr 16399 0gc0g 16546 mulGrpcmgp 18933 1rcur 18945 Ringcrg 18991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-0g 16548 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mgp 18934 df-ur 18946 df-ring 18993 |
This theorem is referenced by: unitgrpid 19113 cnmgpid 20293 xrge0iifmhm 30795 |
Copyright terms: Public domain | W3C validator |