MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringidss Structured version   Visualization version   GIF version

Theorem ringidss 20300
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
ringidss.b 𝐵 = (Base‘𝑅)
ringidss.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidss ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))

Proof of Theorem ringidss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2740 . 2 (0g𝑀) = (0g𝑀)
3 eqid 2740 . 2 (+g𝑀) = (+g𝑀)
4 simp3 1138 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1𝐴)
5 ringidss.g . . . . 5 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
6 eqid 2740 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 ringidss.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7mgpbas 20167 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 17296 . . . 4 (𝐴𝐵𝐴 = (Base‘𝑀))
1093ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 = (Base‘𝑀))
114, 10eleqtrd 2846 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 ∈ (Base‘𝑀))
12 simp2 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴𝐵)
1310, 12eqsstrrd 4048 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑀) ⊆ 𝐵)
1413sselda 4008 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦𝐵)
15 fvex 6933 . . . . . . . 8 (Base‘𝑀) ∈ V
1610, 15eqeltrdi 2852 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 ∈ V)
17 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
186, 17mgpplusg 20165 . . . . . . . 8 (.r𝑅) = (+g‘(mulGrp‘𝑅))
195, 18ressplusg 17349 . . . . . . 7 (𝐴 ∈ V → (.r𝑅) = (+g𝑀))
2016, 19syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g𝑀))
2120adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (.r𝑅) = (+g𝑀))
2221oveqd 7465 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = ( 1 (+g𝑀)𝑦))
23 ringidss.u . . . . . 6 1 = (1r𝑅)
247, 17, 23ringlidm 20292 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
25243ad2antl1 1185 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
2622, 25eqtr3d 2782 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (+g𝑀)𝑦) = 𝑦)
2714, 26syldan 590 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g𝑀)𝑦) = 𝑦)
2821oveqd 7465 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = (𝑦(+g𝑀) 1 ))
297, 17, 23ringridm 20293 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
30293ad2antl1 1185 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
3128, 30eqtr3d 2782 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(+g𝑀) 1 ) = 𝑦)
3214, 31syldan 590 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g𝑀) 1 ) = 𝑦)
331, 2, 3, 11, 27, 32ismgmid2 18706 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mgp 20162  df-ur 20209  df-ring 20262
This theorem is referenced by:  unitgrpid  20411  cnmgpid  21470  xrge0iifmhm  33885
  Copyright terms: Public domain W3C validator