| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidss | Structured version Visualization version GIF version | ||
| Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| ringidss.g | ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) |
| ringidss.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringidss.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidss | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2730 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 3 | eqid 2730 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 ∈ 𝐴) | |
| 5 | ringidss.g | . . . . 5 ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 7 | ringidss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 6, 7 | mgpbas 20061 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 9 | 5, 8 | ressbas2 17215 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑀)) |
| 10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 = (Base‘𝑀)) |
| 11 | 4, 10 | eleqtrd 2831 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 ∈ (Base‘𝑀)) |
| 12 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 ⊆ 𝐵) | |
| 13 | 10, 12 | eqsstrrd 3985 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → (Base‘𝑀) ⊆ 𝐵) |
| 14 | 13 | sselda 3949 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦 ∈ 𝐵) |
| 15 | fvex 6874 | . . . . . . . 8 ⊢ (Base‘𝑀) ∈ V | |
| 16 | 10, 15 | eqeltrdi 2837 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 ∈ V) |
| 17 | eqid 2730 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 18 | 6, 17 | mgpplusg 20060 | . . . . . . . 8 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 19 | 5, 18 | ressplusg 17261 | . . . . . . 7 ⊢ (𝐴 ∈ V → (.r‘𝑅) = (+g‘𝑀)) |
| 20 | 16, 19 | syl 17 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → (.r‘𝑅) = (+g‘𝑀)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (.r‘𝑅) = (+g‘𝑀)) |
| 22 | 21 | oveqd 7407 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = ( 1 (+g‘𝑀)𝑦)) |
| 23 | ringidss.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 24 | 7, 17, 23 | ringlidm 20185 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = 𝑦) |
| 25 | 24 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = 𝑦) |
| 26 | 22, 25 | eqtr3d 2767 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (+g‘𝑀)𝑦) = 𝑦) |
| 27 | 14, 26 | syldan 591 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g‘𝑀)𝑦) = 𝑦) |
| 28 | 21 | oveqd 7407 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = (𝑦(+g‘𝑀) 1 )) |
| 29 | 7, 17, 23 | ringridm 20186 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = 𝑦) |
| 30 | 29 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = 𝑦) |
| 31 | 28, 30 | eqtr3d 2767 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑀) 1 ) = 𝑦) |
| 32 | 14, 31 | syldan 591 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g‘𝑀) 1 ) = 𝑦) |
| 33 | 1, 2, 3, 11, 27, 32 | ismgmid2 18602 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mgp 20057 df-ur 20098 df-ring 20151 |
| This theorem is referenced by: unitgrpid 20301 cnmgpid 21353 xrge0iifmhm 33936 |
| Copyright terms: Public domain | W3C validator |