![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidss | Structured version Visualization version GIF version |
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ringidss.g | ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) |
ringidss.b | ⊢ 𝐵 = (Base‘𝑅) |
ringidss.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidss | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2732 | . 2 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2732 | . 2 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
4 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 ∈ 𝐴) | |
5 | ringidss.g | . . . . 5 ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) | |
6 | eqid 2732 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
7 | ringidss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 6, 7 | mgpbas 20034 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
9 | 5, 8 | ressbas2 17186 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑀)) |
10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 = (Base‘𝑀)) |
11 | 4, 10 | eleqtrd 2835 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 ∈ (Base‘𝑀)) |
12 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 ⊆ 𝐵) | |
13 | 10, 12 | eqsstrrd 4021 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → (Base‘𝑀) ⊆ 𝐵) |
14 | 13 | sselda 3982 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦 ∈ 𝐵) |
15 | fvex 6904 | . . . . . . . 8 ⊢ (Base‘𝑀) ∈ V | |
16 | 10, 15 | eqeltrdi 2841 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 𝐴 ∈ V) |
17 | eqid 2732 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 6, 17 | mgpplusg 20032 | . . . . . . . 8 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
19 | 5, 18 | ressplusg 17239 | . . . . . . 7 ⊢ (𝐴 ∈ V → (.r‘𝑅) = (+g‘𝑀)) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → (.r‘𝑅) = (+g‘𝑀)) |
21 | 20 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (.r‘𝑅) = (+g‘𝑀)) |
22 | 21 | oveqd 7428 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = ( 1 (+g‘𝑀)𝑦)) |
23 | ringidss.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
24 | 7, 17, 23 | ringlidm 20157 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = 𝑦) |
25 | 24 | 3ad2antl1 1185 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑦) = 𝑦) |
26 | 22, 25 | eqtr3d 2774 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ( 1 (+g‘𝑀)𝑦) = 𝑦) |
27 | 14, 26 | syldan 591 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g‘𝑀)𝑦) = 𝑦) |
28 | 21 | oveqd 7428 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = (𝑦(+g‘𝑀) 1 )) |
29 | 7, 17, 23 | ringridm 20158 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = 𝑦) |
30 | 29 | 3ad2antl1 1185 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(.r‘𝑅) 1 ) = 𝑦) |
31 | 28, 30 | eqtr3d 2774 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑀) 1 ) = 𝑦) |
32 | 14, 31 | syldan 591 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g‘𝑀) 1 ) = 𝑦) |
33 | 1, 2, 3, 11, 27, 32 | ismgmid2 18593 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 ↾s cress 17177 +gcplusg 17201 .rcmulr 17202 0gc0g 17389 mulGrpcmgp 20028 1rcur 20075 Ringcrg 20127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mgp 20029 df-ur 20076 df-ring 20129 |
This theorem is referenced by: unitgrpid 20276 cnmgpid 21207 xrge0iifmhm 33205 |
Copyright terms: Public domain | W3C validator |