MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringidss Structured version   Visualization version   GIF version

Theorem ringidss 20291
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
ringidss.b 𝐵 = (Base‘𝑅)
ringidss.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidss ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))

Proof of Theorem ringidss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2735 . 2 (0g𝑀) = (0g𝑀)
3 eqid 2735 . 2 (+g𝑀) = (+g𝑀)
4 simp3 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1𝐴)
5 ringidss.g . . . . 5 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
6 eqid 2735 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 ringidss.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7mgpbas 20158 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 17283 . . . 4 (𝐴𝐵𝐴 = (Base‘𝑀))
1093ad2ant2 1133 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 = (Base‘𝑀))
114, 10eleqtrd 2841 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 ∈ (Base‘𝑀))
12 simp2 1136 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴𝐵)
1310, 12eqsstrrd 4035 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑀) ⊆ 𝐵)
1413sselda 3995 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦𝐵)
15 fvex 6920 . . . . . . . 8 (Base‘𝑀) ∈ V
1610, 15eqeltrdi 2847 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 ∈ V)
17 eqid 2735 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
186, 17mgpplusg 20156 . . . . . . . 8 (.r𝑅) = (+g‘(mulGrp‘𝑅))
195, 18ressplusg 17336 . . . . . . 7 (𝐴 ∈ V → (.r𝑅) = (+g𝑀))
2016, 19syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g𝑀))
2120adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (.r𝑅) = (+g𝑀))
2221oveqd 7448 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = ( 1 (+g𝑀)𝑦))
23 ringidss.u . . . . . 6 1 = (1r𝑅)
247, 17, 23ringlidm 20283 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
25243ad2antl1 1184 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
2622, 25eqtr3d 2777 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (+g𝑀)𝑦) = 𝑦)
2714, 26syldan 591 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g𝑀)𝑦) = 𝑦)
2821oveqd 7448 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = (𝑦(+g𝑀) 1 ))
297, 17, 23ringridm 20284 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
30293ad2antl1 1184 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
3128, 30eqtr3d 2777 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(+g𝑀) 1 ) = 𝑦)
3214, 31syldan 591 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g𝑀) 1 ) = 𝑦)
331, 2, 3, 11, 27, 32ismgmid2 18694 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mgp 20153  df-ur 20200  df-ring 20253
This theorem is referenced by:  unitgrpid  20402  cnmgpid  21465  xrge0iifmhm  33900
  Copyright terms: Public domain W3C validator