MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringidss Structured version   Visualization version   GIF version

Theorem ringidss 20196
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
ringidss.b 𝐵 = (Base‘𝑅)
ringidss.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidss ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))

Proof of Theorem ringidss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2731 . 2 (0g𝑀) = (0g𝑀)
3 eqid 2731 . 2 (+g𝑀) = (+g𝑀)
4 simp3 1138 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1𝐴)
5 ringidss.g . . . . 5 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
6 eqid 2731 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 ringidss.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7mgpbas 20064 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 17149 . . . 4 (𝐴𝐵𝐴 = (Base‘𝑀))
1093ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 = (Base‘𝑀))
114, 10eleqtrd 2833 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 ∈ (Base‘𝑀))
12 simp2 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴𝐵)
1310, 12eqsstrrd 3970 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑀) ⊆ 𝐵)
1413sselda 3934 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦𝐵)
15 fvex 6835 . . . . . . . 8 (Base‘𝑀) ∈ V
1610, 15eqeltrdi 2839 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 ∈ V)
17 eqid 2731 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
186, 17mgpplusg 20063 . . . . . . . 8 (.r𝑅) = (+g‘(mulGrp‘𝑅))
195, 18ressplusg 17195 . . . . . . 7 (𝐴 ∈ V → (.r𝑅) = (+g𝑀))
2016, 19syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g𝑀))
2120adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (.r𝑅) = (+g𝑀))
2221oveqd 7363 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = ( 1 (+g𝑀)𝑦))
23 ringidss.u . . . . . 6 1 = (1r𝑅)
247, 17, 23ringlidm 20188 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
25243ad2antl1 1186 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
2622, 25eqtr3d 2768 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (+g𝑀)𝑦) = 𝑦)
2714, 26syldan 591 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g𝑀)𝑦) = 𝑦)
2821oveqd 7363 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = (𝑦(+g𝑀) 1 ))
297, 17, 23ringridm 20189 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
30293ad2antl1 1186 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
3128, 30eqtr3d 2768 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(+g𝑀) 1 ) = 𝑦)
3214, 31syldan 591 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g𝑀) 1 ) = 𝑦)
331, 2, 3, 11, 27, 32ismgmid2 18576 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  mulGrpcmgp 20059  1rcur 20100  Ringcrg 20152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mgp 20060  df-ur 20101  df-ring 20154
This theorem is referenced by:  unitgrpid  20304  cnmgpid  21367  xrge0iifmhm  33950
  Copyright terms: Public domain W3C validator