MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1add Structured version   Visualization version   GIF version

Theorem deg1add 26097
Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = (deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1addle.b 𝐵 = (Base‘𝑌)
deg1addle.p + = (+g𝑌)
deg1addle.f (𝜑𝐹𝐵)
deg1addle.g (𝜑𝐺𝐵)
deg1add.l (𝜑 → (𝐷𝐺) < (𝐷𝐹))
Assertion
Ref Expression
deg1add (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))

Proof of Theorem deg1add
StepHypRef Expression
1 deg1addle.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1addle.y . . . . . 6 𝑌 = (Poly1𝑅)
32ply1ring 22216 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑌 ∈ Ring)
5 deg1addle.f . . . 4 (𝜑𝐹𝐵)
6 deg1addle.g . . . 4 (𝜑𝐺𝐵)
7 deg1addle.b . . . . 5 𝐵 = (Base‘𝑌)
8 deg1addle.p . . . . 5 + = (+g𝑌)
97, 8ringacl 20248 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1372 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
11 deg1addle.d . . . 4 𝐷 = (deg1𝑅)
1211, 2, 7deg1xrcl 26076 . . 3 ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1411, 2, 7deg1xrcl 26076 . . 3 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
155, 14syl 17 . 2 (𝜑 → (𝐷𝐹) ∈ ℝ*)
162, 11, 1, 7, 8, 5, 6deg1addle 26095 . . 3 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
17 deg1add.l . . . . 5 (𝜑 → (𝐷𝐺) < (𝐷𝐹))
1811, 2, 7deg1xrcl 26076 . . . . . . 7 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
196, 18syl 17 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℝ*)
20 xrltnle 11311 . . . . . 6 (((𝐷𝐺) ∈ ℝ* ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2119, 15, 20syl2anc 584 . . . . 5 (𝜑 → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2217, 21mpbid 232 . . . 4 (𝜑 → ¬ (𝐷𝐹) ≤ (𝐷𝐺))
2322iffalsed 4518 . . 3 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) = (𝐷𝐹))
2416, 23breqtrd 5151 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷𝐹))
25 nltmnf 13154 . . . . . 6 ((𝐷𝐺) ∈ ℝ* → ¬ (𝐷𝐺) < -∞)
2619, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐷𝐺) < -∞)
2717adantr 480 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < (𝐷𝐹))
28 fveq2 6887 . . . . . . . . 9 (𝐹 = (0g𝑌) → (𝐷𝐹) = (𝐷‘(0g𝑌)))
29 eqid 2734 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
3011, 2, 29deg1z 26081 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐷‘(0g𝑌)) = -∞)
311, 30syl 17 . . . . . . . . 9 (𝜑 → (𝐷‘(0g𝑌)) = -∞)
3228, 31sylan9eqr 2791 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐹) = -∞)
3327, 32breqtrd 5151 . . . . . . 7 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < -∞)
3433ex 412 . . . . . 6 (𝜑 → (𝐹 = (0g𝑌) → (𝐷𝐺) < -∞))
3534necon3bd 2945 . . . . 5 (𝜑 → (¬ (𝐷𝐺) < -∞ → 𝐹 ≠ (0g𝑌)))
3626, 35mpd 15 . . . 4 (𝜑𝐹 ≠ (0g𝑌))
3711, 2, 29, 7deg1nn0cl 26082 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → (𝐷𝐹) ∈ ℕ0)
381, 5, 36, 37syl3anc 1372 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
39 eqid 2734 . . . . . . 7 (+g𝑅) = (+g𝑅)
402, 7, 8, 39coe1addfv 22235 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ (𝐷𝐹) ∈ ℕ0) → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
411, 5, 6, 38, 40syl31anc 1374 . . . . 5 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
42 eqid 2734 . . . . . . . 8 (0g𝑅) = (0g𝑅)
43 eqid 2734 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
4411, 2, 7, 42, 43deg1lt 26091 . . . . . . 7 ((𝐺𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ (𝐷𝐺) < (𝐷𝐹)) → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
456, 38, 17, 44syl3anc 1372 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
4645oveq2d 7430 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)))
47 ringgrp 20208 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
481, 47syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
49 eqid 2734 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
50 eqid 2734 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5149, 7, 2, 50coe1f 22180 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
525, 51syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
5352, 38ffvelcdmd 7086 . . . . . 6 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
5450, 39, 42grprid 18960 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5548, 53, 54syl2anc 584 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5641, 46, 553eqtrd 2773 . . . 4 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = ((coe1𝐹)‘(𝐷𝐹)))
5711, 2, 29, 7, 42, 49deg1ldg 26086 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
581, 5, 36, 57syl3anc 1372 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
5956, 58eqnetrd 2998 . . 3 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅))
60 eqid 2734 . . . 4 (coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺))
6111, 2, 7, 42, 60deg1ge 26092 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅)) → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6210, 38, 59, 61syl3anc 1372 . 2 (𝜑 → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6313, 15, 24, 62xrletrid 13180 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  ifcif 4507   class class class wbr 5125  wf 6538  cfv 6542  (class class class)co 7414  -∞cmnf 11276  *cxr 11277   < clt 11278  cle 11279  0cn0 12510  Basecbs 17230  +gcplusg 17277  0gc0g 17460  Grpcgrp 18925  Ringcrg 20203  Poly1cpl1 22145  coe1cco1 22146  deg1cdg1 26048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-ofr 7681  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-fzo 13678  df-seq 14026  df-hash 14353  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-hom 17301  df-cco 17302  df-0g 17462  df-gsum 17463  df-prds 17468  df-pws 17470  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18770  df-submnd 18771  df-grp 18928  df-minusg 18929  df-mulg 19060  df-subg 19115  df-ghm 19205  df-cntz 19309  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-ring 20205  df-cring 20206  df-subrng 20519  df-subrg 20543  df-cnfld 21332  df-psr 21896  df-mpl 21898  df-opsr 21900  df-psr1 22148  df-ply1 22150  df-coe1 22151  df-mdeg 26049  df-deg1 26050
This theorem is referenced by:  deg1sub  26102  rtelextdg2lem  33708  aks6d1c5lem3  42079  aks6d1c6lem1  42112
  Copyright terms: Public domain W3C validator