MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1add Structured version   Visualization version   GIF version

Theorem deg1add 25856
Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = ( deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1addle.b 𝐵 = (Base‘𝑌)
deg1addle.p + = (+g𝑌)
deg1addle.f (𝜑𝐹𝐵)
deg1addle.g (𝜑𝐺𝐵)
deg1add.l (𝜑 → (𝐷𝐺) < (𝐷𝐹))
Assertion
Ref Expression
deg1add (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))

Proof of Theorem deg1add
StepHypRef Expression
1 deg1addle.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1addle.y . . . . . 6 𝑌 = (Poly1𝑅)
32ply1ring 21990 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑌 ∈ Ring)
5 deg1addle.f . . . 4 (𝜑𝐹𝐵)
6 deg1addle.g . . . 4 (𝜑𝐺𝐵)
7 deg1addle.b . . . . 5 𝐵 = (Base‘𝑌)
8 deg1addle.p . . . . 5 + = (+g𝑌)
97, 8ringacl 20166 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1369 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
11 deg1addle.d . . . 4 𝐷 = ( deg1𝑅)
1211, 2, 7deg1xrcl 25835 . . 3 ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1411, 2, 7deg1xrcl 25835 . . 3 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
155, 14syl 17 . 2 (𝜑 → (𝐷𝐹) ∈ ℝ*)
162, 11, 1, 7, 8, 5, 6deg1addle 25854 . . 3 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
17 deg1add.l . . . . 5 (𝜑 → (𝐷𝐺) < (𝐷𝐹))
1811, 2, 7deg1xrcl 25835 . . . . . . 7 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
196, 18syl 17 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℝ*)
20 xrltnle 11285 . . . . . 6 (((𝐷𝐺) ∈ ℝ* ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2119, 15, 20syl2anc 582 . . . . 5 (𝜑 → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2217, 21mpbid 231 . . . 4 (𝜑 → ¬ (𝐷𝐹) ≤ (𝐷𝐺))
2322iffalsed 4538 . . 3 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) = (𝐷𝐹))
2416, 23breqtrd 5173 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷𝐹))
25 nltmnf 13113 . . . . . 6 ((𝐷𝐺) ∈ ℝ* → ¬ (𝐷𝐺) < -∞)
2619, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐷𝐺) < -∞)
2717adantr 479 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < (𝐷𝐹))
28 fveq2 6890 . . . . . . . . 9 (𝐹 = (0g𝑌) → (𝐷𝐹) = (𝐷‘(0g𝑌)))
29 eqid 2730 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
3011, 2, 29deg1z 25840 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐷‘(0g𝑌)) = -∞)
311, 30syl 17 . . . . . . . . 9 (𝜑 → (𝐷‘(0g𝑌)) = -∞)
3228, 31sylan9eqr 2792 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐹) = -∞)
3327, 32breqtrd 5173 . . . . . . 7 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < -∞)
3433ex 411 . . . . . 6 (𝜑 → (𝐹 = (0g𝑌) → (𝐷𝐺) < -∞))
3534necon3bd 2952 . . . . 5 (𝜑 → (¬ (𝐷𝐺) < -∞ → 𝐹 ≠ (0g𝑌)))
3626, 35mpd 15 . . . 4 (𝜑𝐹 ≠ (0g𝑌))
3711, 2, 29, 7deg1nn0cl 25841 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → (𝐷𝐹) ∈ ℕ0)
381, 5, 36, 37syl3anc 1369 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
39 eqid 2730 . . . . . . 7 (+g𝑅) = (+g𝑅)
402, 7, 8, 39coe1addfv 22007 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ (𝐷𝐹) ∈ ℕ0) → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
411, 5, 6, 38, 40syl31anc 1371 . . . . 5 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
42 eqid 2730 . . . . . . . 8 (0g𝑅) = (0g𝑅)
43 eqid 2730 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
4411, 2, 7, 42, 43deg1lt 25850 . . . . . . 7 ((𝐺𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ (𝐷𝐺) < (𝐷𝐹)) → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
456, 38, 17, 44syl3anc 1369 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
4645oveq2d 7427 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)))
47 ringgrp 20132 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
481, 47syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
49 eqid 2730 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
50 eqid 2730 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5149, 7, 2, 50coe1f 21954 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
525, 51syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
5352, 38ffvelcdmd 7086 . . . . . 6 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
5450, 39, 42grprid 18889 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5548, 53, 54syl2anc 582 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5641, 46, 553eqtrd 2774 . . . 4 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = ((coe1𝐹)‘(𝐷𝐹)))
5711, 2, 29, 7, 42, 49deg1ldg 25845 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
581, 5, 36, 57syl3anc 1369 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
5956, 58eqnetrd 3006 . . 3 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅))
60 eqid 2730 . . . 4 (coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺))
6111, 2, 7, 42, 60deg1ge 25851 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅)) → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6210, 38, 59, 61syl3anc 1369 . 2 (𝜑 → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6313, 15, 24, 62xrletrid 13138 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  ifcif 4527   class class class wbr 5147  wf 6538  cfv 6542  (class class class)co 7411  -∞cmnf 11250  *cxr 11251   < clt 11252  cle 11253  0cn0 12476  Basecbs 17148  +gcplusg 17201  0gc0g 17389  Grpcgrp 18855  Ringcrg 20127  Poly1cpl1 21920  coe1cco1 21921   deg1 cdg1 25804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-ofr 7673  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-0g 17391  df-gsum 17392  df-prds 17397  df-pws 17399  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-mulg 18987  df-subg 19039  df-ghm 19128  df-cntz 19222  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-subrng 20434  df-subrg 20459  df-cnfld 21145  df-psr 21681  df-mpl 21683  df-opsr 21685  df-psr1 21923  df-ply1 21925  df-coe1 21926  df-mdeg 25805  df-deg1 25806
This theorem is referenced by:  deg1sub  25861
  Copyright terms: Public domain W3C validator