MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1add Structured version   Visualization version   GIF version

Theorem deg1add 25984
Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = (deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1addle.b 𝐵 = (Base‘𝑌)
deg1addle.p + = (+g𝑌)
deg1addle.f (𝜑𝐹𝐵)
deg1addle.g (𝜑𝐺𝐵)
deg1add.l (𝜑 → (𝐷𝐺) < (𝐷𝐹))
Assertion
Ref Expression
deg1add (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))

Proof of Theorem deg1add
StepHypRef Expression
1 deg1addle.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1addle.y . . . . . 6 𝑌 = (Poly1𝑅)
32ply1ring 22108 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑌 ∈ Ring)
5 deg1addle.f . . . 4 (𝜑𝐹𝐵)
6 deg1addle.g . . . 4 (𝜑𝐺𝐵)
7 deg1addle.b . . . . 5 𝐵 = (Base‘𝑌)
8 deg1addle.p . . . . 5 + = (+g𝑌)
97, 8ringacl 20163 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1373 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
11 deg1addle.d . . . 4 𝐷 = (deg1𝑅)
1211, 2, 7deg1xrcl 25963 . . 3 ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1411, 2, 7deg1xrcl 25963 . . 3 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
155, 14syl 17 . 2 (𝜑 → (𝐷𝐹) ∈ ℝ*)
162, 11, 1, 7, 8, 5, 6deg1addle 25982 . . 3 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
17 deg1add.l . . . . 5 (𝜑 → (𝐷𝐺) < (𝐷𝐹))
1811, 2, 7deg1xrcl 25963 . . . . . . 7 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
196, 18syl 17 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℝ*)
20 xrltnle 11217 . . . . . 6 (((𝐷𝐺) ∈ ℝ* ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2119, 15, 20syl2anc 584 . . . . 5 (𝜑 → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2217, 21mpbid 232 . . . 4 (𝜑 → ¬ (𝐷𝐹) ≤ (𝐷𝐺))
2322iffalsed 4495 . . 3 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) = (𝐷𝐹))
2416, 23breqtrd 5128 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷𝐹))
25 nltmnf 13065 . . . . . 6 ((𝐷𝐺) ∈ ℝ* → ¬ (𝐷𝐺) < -∞)
2619, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐷𝐺) < -∞)
2717adantr 480 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < (𝐷𝐹))
28 fveq2 6840 . . . . . . . . 9 (𝐹 = (0g𝑌) → (𝐷𝐹) = (𝐷‘(0g𝑌)))
29 eqid 2729 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
3011, 2, 29deg1z 25968 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐷‘(0g𝑌)) = -∞)
311, 30syl 17 . . . . . . . . 9 (𝜑 → (𝐷‘(0g𝑌)) = -∞)
3228, 31sylan9eqr 2786 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐹) = -∞)
3327, 32breqtrd 5128 . . . . . . 7 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < -∞)
3433ex 412 . . . . . 6 (𝜑 → (𝐹 = (0g𝑌) → (𝐷𝐺) < -∞))
3534necon3bd 2939 . . . . 5 (𝜑 → (¬ (𝐷𝐺) < -∞ → 𝐹 ≠ (0g𝑌)))
3626, 35mpd 15 . . . 4 (𝜑𝐹 ≠ (0g𝑌))
3711, 2, 29, 7deg1nn0cl 25969 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → (𝐷𝐹) ∈ ℕ0)
381, 5, 36, 37syl3anc 1373 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
39 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
402, 7, 8, 39coe1addfv 22127 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ (𝐷𝐹) ∈ ℕ0) → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
411, 5, 6, 38, 40syl31anc 1375 . . . . 5 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
42 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
43 eqid 2729 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
4411, 2, 7, 42, 43deg1lt 25978 . . . . . . 7 ((𝐺𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ (𝐷𝐺) < (𝐷𝐹)) → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
456, 38, 17, 44syl3anc 1373 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
4645oveq2d 7385 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)))
47 ringgrp 20123 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
481, 47syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
49 eqid 2729 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
50 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5149, 7, 2, 50coe1f 22072 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
525, 51syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
5352, 38ffvelcdmd 7039 . . . . . 6 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
5450, 39, 42grprid 18876 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5548, 53, 54syl2anc 584 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5641, 46, 553eqtrd 2768 . . . 4 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = ((coe1𝐹)‘(𝐷𝐹)))
5711, 2, 29, 7, 42, 49deg1ldg 25973 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
581, 5, 36, 57syl3anc 1373 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
5956, 58eqnetrd 2992 . . 3 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅))
60 eqid 2729 . . . 4 (coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺))
6111, 2, 7, 42, 60deg1ge 25979 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅)) → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6210, 38, 59, 61syl3anc 1373 . 2 (𝜑 → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6313, 15, 24, 62xrletrid 13091 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4484   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  0cn0 12418  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18841  Ringcrg 20118  Poly1cpl1 22037  coe1cco1 22038  deg1cdg1 25935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-cnfld 21241  df-psr 21794  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-ply1 22042  df-coe1 22043  df-mdeg 25936  df-deg1 25937
This theorem is referenced by:  deg1sub  25989  rtelextdg2lem  33689  cos9thpiminply  33751  aks6d1c5lem3  42098  aks6d1c6lem1  42131
  Copyright terms: Public domain W3C validator