Proof of Theorem deg1add
Step | Hyp | Ref
| Expression |
1 | | deg1addle.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | deg1addle.y |
. . . . . 6
⊢ 𝑌 = (Poly1‘𝑅) |
3 | 2 | ply1ring 21419 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
4 | 1, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Ring) |
5 | | deg1addle.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
6 | | deg1addle.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
7 | | deg1addle.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
8 | | deg1addle.p |
. . . . 5
⊢ + =
(+g‘𝑌) |
9 | 7, 8 | ringacl 19817 |
. . . 4
⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 + 𝐺) ∈ 𝐵) |
10 | 4, 5, 6, 9 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
11 | | deg1addle.d |
. . . 4
⊢ 𝐷 = ( deg1
‘𝑅) |
12 | 11, 2, 7 | deg1xrcl 25247 |
. . 3
⊢ ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈
ℝ*) |
13 | 10, 12 | syl 17 |
. 2
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈
ℝ*) |
14 | 11, 2, 7 | deg1xrcl 25247 |
. . 3
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
15 | 5, 14 | syl 17 |
. 2
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
16 | 2, 11, 1, 7, 8, 5, 6 | deg1addle 25266 |
. . 3
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
17 | | deg1add.l |
. . . . 5
⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) |
18 | 11, 2, 7 | deg1xrcl 25247 |
. . . . . . 7
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
19 | 6, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
20 | | xrltnle 11042 |
. . . . . 6
⊢ (((𝐷‘𝐺) ∈ ℝ* ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐺) < (𝐷‘𝐹) ↔ ¬ (𝐷‘𝐹) ≤ (𝐷‘𝐺))) |
21 | 19, 15, 20 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝐷‘𝐺) < (𝐷‘𝐹) ↔ ¬ (𝐷‘𝐹) ≤ (𝐷‘𝐺))) |
22 | 17, 21 | mpbid 231 |
. . . 4
⊢ (𝜑 → ¬ (𝐷‘𝐹) ≤ (𝐷‘𝐺)) |
23 | 22 | iffalsed 4470 |
. . 3
⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) = (𝐷‘𝐹)) |
24 | 16, 23 | breqtrd 5100 |
. 2
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷‘𝐹)) |
25 | | nltmnf 12865 |
. . . . . 6
⊢ ((𝐷‘𝐺) ∈ ℝ* → ¬
(𝐷‘𝐺) < -∞) |
26 | 19, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → ¬ (𝐷‘𝐺) < -∞) |
27 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 = (0g‘𝑌)) → (𝐷‘𝐺) < (𝐷‘𝐹)) |
28 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝐹 = (0g‘𝑌) → (𝐷‘𝐹) = (𝐷‘(0g‘𝑌))) |
29 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑌) = (0g‘𝑌) |
30 | 11, 2, 29 | deg1z 25252 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝐷‘(0g‘𝑌)) = -∞) |
31 | 1, 30 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(0g‘𝑌)) = -∞) |
32 | 28, 31 | sylan9eqr 2800 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 = (0g‘𝑌)) → (𝐷‘𝐹) = -∞) |
33 | 27, 32 | breqtrd 5100 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 = (0g‘𝑌)) → (𝐷‘𝐺) < -∞) |
34 | 33 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝐹 = (0g‘𝑌) → (𝐷‘𝐺) < -∞)) |
35 | 34 | necon3bd 2957 |
. . . . 5
⊢ (𝜑 → (¬ (𝐷‘𝐺) < -∞ → 𝐹 ≠ (0g‘𝑌))) |
36 | 26, 35 | mpd 15 |
. . . 4
⊢ (𝜑 → 𝐹 ≠ (0g‘𝑌)) |
37 | 11, 2, 29, 7 | deg1nn0cl 25253 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑌)) → (𝐷‘𝐹) ∈
ℕ0) |
38 | 1, 5, 36, 37 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
39 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
40 | 2, 7, 8, 39 | coe1addfv 21436 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝐷‘𝐹) ∈ ℕ0) →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) = (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐹)))) |
41 | 1, 5, 6, 38, 40 | syl31anc 1372 |
. . . . 5
⊢ (𝜑 →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) = (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐹)))) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
43 | | eqid 2738 |
. . . . . . . 8
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
44 | 11, 2, 7, 42, 43 | deg1lt 25262 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℕ0 ∧ (𝐷‘𝐺) < (𝐷‘𝐹)) → ((coe1‘𝐺)‘(𝐷‘𝐹)) = (0g‘𝑅)) |
45 | 6, 38, 17, 44 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 →
((coe1‘𝐺)‘(𝐷‘𝐹)) = (0g‘𝑅)) |
46 | 45 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 →
(((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐹))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)(0g‘𝑅))) |
47 | | ringgrp 19788 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
48 | 1, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
49 | | eqid 2738 |
. . . . . . . . 9
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
50 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
51 | 49, 7, 2, 50 | coe1f 21382 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
52 | 5, 51 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
53 | 52, 38 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 →
((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ (Base‘𝑅)) |
54 | 50, 39, 42 | grprid 18610 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧
((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)(0g‘𝑅)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
55 | 48, 53, 54 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
(((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)(0g‘𝑅)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
56 | 41, 46, 55 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
57 | 11, 2, 29, 7, 42, 49 | deg1ldg 25257 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑌)) → ((coe1‘𝐹)‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
58 | 1, 5, 36, 57 | syl3anc 1370 |
. . . 4
⊢ (𝜑 →
((coe1‘𝐹)‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
59 | 56, 58 | eqnetrd 3011 |
. . 3
⊢ (𝜑 →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
60 | | eqid 2738 |
. . . 4
⊢
(coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺)) |
61 | 11, 2, 7, 42, 60 | deg1ge 25263 |
. . 3
⊢ (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℕ0 ∧
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) → (𝐷‘𝐹) ≤ (𝐷‘(𝐹 + 𝐺))) |
62 | 10, 38, 59, 61 | syl3anc 1370 |
. 2
⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘(𝐹 + 𝐺))) |
63 | 13, 15, 24, 62 | xrletrid 12889 |
1
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷‘𝐹)) |