MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1add Structured version   Visualization version   GIF version

Theorem deg1add 26162
Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = (deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1addle.b 𝐵 = (Base‘𝑌)
deg1addle.p + = (+g𝑌)
deg1addle.f (𝜑𝐹𝐵)
deg1addle.g (𝜑𝐺𝐵)
deg1add.l (𝜑 → (𝐷𝐺) < (𝐷𝐹))
Assertion
Ref Expression
deg1add (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))

Proof of Theorem deg1add
StepHypRef Expression
1 deg1addle.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1addle.y . . . . . 6 𝑌 = (Poly1𝑅)
32ply1ring 22270 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑌 ∈ Ring)
5 deg1addle.f . . . 4 (𝜑𝐹𝐵)
6 deg1addle.g . . . 4 (𝜑𝐺𝐵)
7 deg1addle.b . . . . 5 𝐵 = (Base‘𝑌)
8 deg1addle.p . . . . 5 + = (+g𝑌)
97, 8ringacl 20301 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1371 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
11 deg1addle.d . . . 4 𝐷 = (deg1𝑅)
1211, 2, 7deg1xrcl 26141 . . 3 ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1411, 2, 7deg1xrcl 26141 . . 3 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
155, 14syl 17 . 2 (𝜑 → (𝐷𝐹) ∈ ℝ*)
162, 11, 1, 7, 8, 5, 6deg1addle 26160 . . 3 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
17 deg1add.l . . . . 5 (𝜑 → (𝐷𝐺) < (𝐷𝐹))
1811, 2, 7deg1xrcl 26141 . . . . . . 7 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
196, 18syl 17 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℝ*)
20 xrltnle 11357 . . . . . 6 (((𝐷𝐺) ∈ ℝ* ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2119, 15, 20syl2anc 583 . . . . 5 (𝜑 → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2217, 21mpbid 232 . . . 4 (𝜑 → ¬ (𝐷𝐹) ≤ (𝐷𝐺))
2322iffalsed 4559 . . 3 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) = (𝐷𝐹))
2416, 23breqtrd 5192 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷𝐹))
25 nltmnf 13192 . . . . . 6 ((𝐷𝐺) ∈ ℝ* → ¬ (𝐷𝐺) < -∞)
2619, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐷𝐺) < -∞)
2717adantr 480 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < (𝐷𝐹))
28 fveq2 6920 . . . . . . . . 9 (𝐹 = (0g𝑌) → (𝐷𝐹) = (𝐷‘(0g𝑌)))
29 eqid 2740 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
3011, 2, 29deg1z 26146 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐷‘(0g𝑌)) = -∞)
311, 30syl 17 . . . . . . . . 9 (𝜑 → (𝐷‘(0g𝑌)) = -∞)
3228, 31sylan9eqr 2802 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐹) = -∞)
3327, 32breqtrd 5192 . . . . . . 7 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < -∞)
3433ex 412 . . . . . 6 (𝜑 → (𝐹 = (0g𝑌) → (𝐷𝐺) < -∞))
3534necon3bd 2960 . . . . 5 (𝜑 → (¬ (𝐷𝐺) < -∞ → 𝐹 ≠ (0g𝑌)))
3626, 35mpd 15 . . . 4 (𝜑𝐹 ≠ (0g𝑌))
3711, 2, 29, 7deg1nn0cl 26147 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → (𝐷𝐹) ∈ ℕ0)
381, 5, 36, 37syl3anc 1371 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
39 eqid 2740 . . . . . . 7 (+g𝑅) = (+g𝑅)
402, 7, 8, 39coe1addfv 22289 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ (𝐷𝐹) ∈ ℕ0) → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
411, 5, 6, 38, 40syl31anc 1373 . . . . 5 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
42 eqid 2740 . . . . . . . 8 (0g𝑅) = (0g𝑅)
43 eqid 2740 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
4411, 2, 7, 42, 43deg1lt 26156 . . . . . . 7 ((𝐺𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ (𝐷𝐺) < (𝐷𝐹)) → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
456, 38, 17, 44syl3anc 1371 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
4645oveq2d 7464 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)))
47 ringgrp 20265 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
481, 47syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
49 eqid 2740 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
50 eqid 2740 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5149, 7, 2, 50coe1f 22234 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
525, 51syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
5352, 38ffvelcdmd 7119 . . . . . 6 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
5450, 39, 42grprid 19008 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5548, 53, 54syl2anc 583 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5641, 46, 553eqtrd 2784 . . . 4 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = ((coe1𝐹)‘(𝐷𝐹)))
5711, 2, 29, 7, 42, 49deg1ldg 26151 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
581, 5, 36, 57syl3anc 1371 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
5956, 58eqnetrd 3014 . . 3 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅))
60 eqid 2740 . . . 4 (coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺))
6111, 2, 7, 42, 60deg1ge 26157 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅)) → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6210, 38, 59, 61syl3anc 1371 . 2 (𝜑 → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6313, 15, 24, 62xrletrid 13217 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  0cn0 12553  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  Ringcrg 20260  Poly1cpl1 22199  coe1cco1 22200  deg1cdg1 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-cnfld 21388  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115
This theorem is referenced by:  deg1sub  26167  rtelextdg2lem  33717  aks6d1c5lem3  42094  aks6d1c6lem1  42127
  Copyright terms: Public domain W3C validator