Proof of Theorem deg1add
| Step | Hyp | Ref
| Expression |
| 1 | | deg1addle.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | deg1addle.y |
. . . . . 6
⊢ 𝑌 = (Poly1‘𝑅) |
| 3 | 2 | ply1ring 22216 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
| 4 | 1, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 5 | | deg1addle.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 6 | | deg1addle.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 7 | | deg1addle.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
| 8 | | deg1addle.p |
. . . . 5
⊢ + =
(+g‘𝑌) |
| 9 | 7, 8 | ringacl 20248 |
. . . 4
⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 + 𝐺) ∈ 𝐵) |
| 10 | 4, 5, 6, 9 | syl3anc 1372 |
. . 3
⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
| 11 | | deg1addle.d |
. . . 4
⊢ 𝐷 = (deg1‘𝑅) |
| 12 | 11, 2, 7 | deg1xrcl 26076 |
. . 3
⊢ ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈
ℝ*) |
| 13 | 10, 12 | syl 17 |
. 2
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈
ℝ*) |
| 14 | 11, 2, 7 | deg1xrcl 26076 |
. . 3
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
| 15 | 5, 14 | syl 17 |
. 2
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
| 16 | 2, 11, 1, 7, 8, 5, 6 | deg1addle 26095 |
. . 3
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
| 17 | | deg1add.l |
. . . . 5
⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) |
| 18 | 11, 2, 7 | deg1xrcl 26076 |
. . . . . . 7
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
| 19 | 6, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
| 20 | | xrltnle 11311 |
. . . . . 6
⊢ (((𝐷‘𝐺) ∈ ℝ* ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐺) < (𝐷‘𝐹) ↔ ¬ (𝐷‘𝐹) ≤ (𝐷‘𝐺))) |
| 21 | 19, 15, 20 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝐷‘𝐺) < (𝐷‘𝐹) ↔ ¬ (𝐷‘𝐹) ≤ (𝐷‘𝐺))) |
| 22 | 17, 21 | mpbid 232 |
. . . 4
⊢ (𝜑 → ¬ (𝐷‘𝐹) ≤ (𝐷‘𝐺)) |
| 23 | 22 | iffalsed 4518 |
. . 3
⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) = (𝐷‘𝐹)) |
| 24 | 16, 23 | breqtrd 5151 |
. 2
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷‘𝐹)) |
| 25 | | nltmnf 13154 |
. . . . . 6
⊢ ((𝐷‘𝐺) ∈ ℝ* → ¬
(𝐷‘𝐺) < -∞) |
| 26 | 19, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → ¬ (𝐷‘𝐺) < -∞) |
| 27 | 17 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 = (0g‘𝑌)) → (𝐷‘𝐺) < (𝐷‘𝐹)) |
| 28 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝐹 = (0g‘𝑌) → (𝐷‘𝐹) = (𝐷‘(0g‘𝑌))) |
| 29 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 30 | 11, 2, 29 | deg1z 26081 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝐷‘(0g‘𝑌)) = -∞) |
| 31 | 1, 30 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(0g‘𝑌)) = -∞) |
| 32 | 28, 31 | sylan9eqr 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 = (0g‘𝑌)) → (𝐷‘𝐹) = -∞) |
| 33 | 27, 32 | breqtrd 5151 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 = (0g‘𝑌)) → (𝐷‘𝐺) < -∞) |
| 34 | 33 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝐹 = (0g‘𝑌) → (𝐷‘𝐺) < -∞)) |
| 35 | 34 | necon3bd 2945 |
. . . . 5
⊢ (𝜑 → (¬ (𝐷‘𝐺) < -∞ → 𝐹 ≠ (0g‘𝑌))) |
| 36 | 26, 35 | mpd 15 |
. . . 4
⊢ (𝜑 → 𝐹 ≠ (0g‘𝑌)) |
| 37 | 11, 2, 29, 7 | deg1nn0cl 26082 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑌)) → (𝐷‘𝐹) ∈
ℕ0) |
| 38 | 1, 5, 36, 37 | syl3anc 1372 |
. . 3
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
| 39 | | eqid 2734 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 40 | 2, 7, 8, 39 | coe1addfv 22235 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝐷‘𝐹) ∈ ℕ0) →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) = (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐹)))) |
| 41 | 1, 5, 6, 38, 40 | syl31anc 1374 |
. . . . 5
⊢ (𝜑 →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) = (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐹)))) |
| 42 | | eqid 2734 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 43 | | eqid 2734 |
. . . . . . . 8
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
| 44 | 11, 2, 7, 42, 43 | deg1lt 26091 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℕ0 ∧ (𝐷‘𝐺) < (𝐷‘𝐹)) → ((coe1‘𝐺)‘(𝐷‘𝐹)) = (0g‘𝑅)) |
| 45 | 6, 38, 17, 44 | syl3anc 1372 |
. . . . . 6
⊢ (𝜑 →
((coe1‘𝐺)‘(𝐷‘𝐹)) = (0g‘𝑅)) |
| 46 | 45 | oveq2d 7430 |
. . . . 5
⊢ (𝜑 →
(((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐹))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)(0g‘𝑅))) |
| 47 | | ringgrp 20208 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 48 | 1, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 49 | | eqid 2734 |
. . . . . . . . 9
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
| 50 | | eqid 2734 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 51 | 49, 7, 2, 50 | coe1f 22180 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
| 52 | 5, 51 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
| 53 | 52, 38 | ffvelcdmd 7086 |
. . . . . 6
⊢ (𝜑 →
((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ (Base‘𝑅)) |
| 54 | 50, 39, 42 | grprid 18960 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧
((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)(0g‘𝑅)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 55 | 48, 53, 54 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
(((coe1‘𝐹)‘(𝐷‘𝐹))(+g‘𝑅)(0g‘𝑅)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 56 | 41, 46, 55 | 3eqtrd 2773 |
. . . 4
⊢ (𝜑 →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 57 | 11, 2, 29, 7, 42, 49 | deg1ldg 26086 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑌)) → ((coe1‘𝐹)‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
| 58 | 1, 5, 36, 57 | syl3anc 1372 |
. . . 4
⊢ (𝜑 →
((coe1‘𝐹)‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
| 59 | 56, 58 | eqnetrd 2998 |
. . 3
⊢ (𝜑 →
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
| 60 | | eqid 2734 |
. . . 4
⊢
(coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺)) |
| 61 | 11, 2, 7, 42, 60 | deg1ge 26092 |
. . 3
⊢ (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℕ0 ∧
((coe1‘(𝐹
+ 𝐺))‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) → (𝐷‘𝐹) ≤ (𝐷‘(𝐹 + 𝐺))) |
| 62 | 10, 38, 59, 61 | syl3anc 1372 |
. 2
⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘(𝐹 + 𝐺))) |
| 63 | 13, 15, 24, 62 | xrletrid 13180 |
1
⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷‘𝐹)) |