MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2subdi Structured version   Visualization version   GIF version

Theorem ip2subdi 21680
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
ip2subdi.p + = (+g𝐹)
ip2subdi.1 (𝜑𝑊 ∈ PreHil)
ip2subdi.2 (𝜑𝐴𝑉)
ip2subdi.3 (𝜑𝐵𝑉)
ip2subdi.4 (𝜑𝐶𝑉)
ip2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem ip2subdi
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝐹) = (Base‘𝐹)
2 ip2subdi.p . . . 4 + = (+g𝐹)
3 ipsubdir.s . . . 4 𝑆 = (-g𝐹)
4 ip2subdi.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 phllmod 21666 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 phlsrng.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
87lmodring 20883 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
96, 8syl 17 . . . . 5 (𝜑𝐹 ∈ Ring)
10 ringabl 20295 . . . . 5 (𝐹 ∈ Ring → 𝐹 ∈ Abel)
119, 10syl 17 . . . 4 (𝜑𝐹 ∈ Abel)
12 ip2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 ip2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
167, 14, 15, 1ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
174, 12, 13, 16syl3anc 1370 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
18 ip2subdi.5 . . . . 5 (𝜑𝐷𝑉)
197, 14, 15, 1ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
204, 12, 18, 19syl3anc 1370 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
21 ip2subdi.3 . . . . 5 (𝜑𝐵𝑉)
227, 14, 15, 1ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
234, 21, 13, 22syl3anc 1370 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
241, 2, 3, 11, 17, 20, 23ablsubsub4 19851 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) = ((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
2524oveq1d 7446 . 2 (𝜑 → ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
26 ipsubdir.m . . . . . 6 = (-g𝑊)
2715, 26lmodvsubcl 20922 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 𝐷) ∈ 𝑉)
286, 13, 18, 27syl3anc 1370 . . . 4 (𝜑 → (𝐶 𝐷) ∈ 𝑉)
297, 14, 15, 26, 3ipsubdir 21678 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 𝐷) ∈ 𝑉)) → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
304, 12, 21, 28, 29syl13anc 1371 . . 3 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
317, 14, 15, 26, 3ipsubdi 21679 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
324, 12, 13, 18, 31syl13anc 1371 . . . 4 (𝜑 → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
337, 14, 15, 26, 3ipsubdi 21679 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
344, 21, 13, 18, 33syl13anc 1371 . . . 4 (𝜑 → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
3532, 34oveq12d 7449 . . 3 (𝜑 → ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))) = (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))))
36 ringgrp 20256 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
379, 36syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
381, 3grpsubcl 19051 . . . . 5 ((𝐹 ∈ Grp ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
3937, 17, 20, 38syl3anc 1370 . . . 4 (𝜑 → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
407, 14, 15, 1ipcl 21669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
414, 21, 18, 40syl3anc 1370 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
421, 2, 3, 11, 39, 23, 41ablsubsub 19850 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
4330, 35, 423eqtrd 2779 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
441, 2ringacl 20292 . . . 4 ((𝐹 ∈ Ring ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹)) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
459, 20, 23, 44syl3anc 1370 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
461, 2, 3abladdsub 19845 . . 3 ((𝐹 ∈ Abel ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4711, 17, 41, 45, 46syl13anc 1371 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4825, 43, 473eqtr4d 2785 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301  ·𝑖cip 17303  Grpcgrp 18964  -gcsg 18966  Abelcabl 19814  Ringcrg 20251  LModclmod 20875  PreHilcphl 21660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-ur 20200  df-ring 20253  df-oppr 20351  df-rhm 20489  df-staf 20857  df-srng 20858  df-lmod 20877  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-phl 21662
This theorem is referenced by:  cph2subdi  25258  ipcau2  25282  tcphcphlem1  25283
  Copyright terms: Public domain W3C validator