MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2subdi Structured version   Visualization version   GIF version

Theorem ip2subdi 20472
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
ip2subdi.p + = (+g𝐹)
ip2subdi.1 (𝜑𝑊 ∈ PreHil)
ip2subdi.2 (𝜑𝐴𝑉)
ip2subdi.3 (𝜑𝐵𝑉)
ip2subdi.4 (𝜑𝐶𝑉)
ip2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem ip2subdi
StepHypRef Expression
1 eqid 2739 . . . 4 (Base‘𝐹) = (Base‘𝐹)
2 ip2subdi.p . . . 4 + = (+g𝐹)
3 ipsubdir.s . . . 4 𝑆 = (-g𝐹)
4 ip2subdi.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 phllmod 20458 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 phlsrng.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
87lmodring 19773 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
96, 8syl 17 . . . . 5 (𝜑𝐹 ∈ Ring)
10 ringabl 19464 . . . . 5 (𝐹 ∈ Ring → 𝐹 ∈ Abel)
119, 10syl 17 . . . 4 (𝜑𝐹 ∈ Abel)
12 ip2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 ip2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
167, 14, 15, 1ipcl 20461 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
174, 12, 13, 16syl3anc 1372 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
18 ip2subdi.5 . . . . 5 (𝜑𝐷𝑉)
197, 14, 15, 1ipcl 20461 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
204, 12, 18, 19syl3anc 1372 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
21 ip2subdi.3 . . . . 5 (𝜑𝐵𝑉)
227, 14, 15, 1ipcl 20461 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
234, 21, 13, 22syl3anc 1372 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
241, 2, 3, 11, 17, 20, 23ablsubsub4 19070 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) = ((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
2524oveq1d 7197 . 2 (𝜑 → ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
26 ipsubdir.m . . . . . 6 = (-g𝑊)
2715, 26lmodvsubcl 19810 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 𝐷) ∈ 𝑉)
286, 13, 18, 27syl3anc 1372 . . . 4 (𝜑 → (𝐶 𝐷) ∈ 𝑉)
297, 14, 15, 26, 3ipsubdir 20470 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 𝐷) ∈ 𝑉)) → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
304, 12, 21, 28, 29syl13anc 1373 . . 3 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
317, 14, 15, 26, 3ipsubdi 20471 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
324, 12, 13, 18, 31syl13anc 1373 . . . 4 (𝜑 → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
337, 14, 15, 26, 3ipsubdi 20471 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
344, 21, 13, 18, 33syl13anc 1373 . . . 4 (𝜑 → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
3532, 34oveq12d 7200 . . 3 (𝜑 → ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))) = (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))))
36 ringgrp 19433 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
379, 36syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
381, 3grpsubcl 18309 . . . . 5 ((𝐹 ∈ Grp ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
3937, 17, 20, 38syl3anc 1372 . . . 4 (𝜑 → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
407, 14, 15, 1ipcl 20461 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
414, 21, 18, 40syl3anc 1372 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
421, 2, 3, 11, 39, 23, 41ablsubsub 19069 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
4330, 35, 423eqtrd 2778 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
441, 2ringacl 19462 . . . 4 ((𝐹 ∈ Ring ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹)) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
459, 20, 23, 44syl3anc 1372 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
461, 2, 3abladdsub 19066 . . 3 ((𝐹 ∈ Abel ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4711, 17, 41, 45, 46syl13anc 1373 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4825, 43, 473eqtr4d 2784 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  cfv 6349  (class class class)co 7182  Basecbs 16598  +gcplusg 16680  Scalarcsca 16683  ·𝑖cip 16685  Grpcgrp 18231  -gcsg 18233  Abelcabl 19037  Ringcrg 19428  LModclmod 19765  PreHilcphl 20452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-tpos 7933  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-plusg 16693  df-mulr 16694  df-sca 16696  df-vsca 16697  df-ip 16698  df-0g 16830  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-mhm 18084  df-grp 18234  df-minusg 18235  df-sbg 18236  df-ghm 18486  df-cmn 19038  df-abl 19039  df-mgp 19371  df-ur 19383  df-ring 19430  df-oppr 19507  df-rnghom 19601  df-staf 19747  df-srng 19748  df-lmod 19767  df-lmhm 19925  df-lvec 20006  df-sra 20075  df-rgmod 20076  df-phl 20454
This theorem is referenced by:  cph2subdi  23974  ipcau2  23998  tcphcphlem1  23999
  Copyright terms: Public domain W3C validator