MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2subdi Structured version   Visualization version   GIF version

Theorem ip2subdi 21569
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
ip2subdi.p + = (+g𝐹)
ip2subdi.1 (𝜑𝑊 ∈ PreHil)
ip2subdi.2 (𝜑𝐴𝑉)
ip2subdi.3 (𝜑𝐵𝑉)
ip2subdi.4 (𝜑𝐶𝑉)
ip2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem ip2subdi
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐹) = (Base‘𝐹)
2 ip2subdi.p . . . 4 + = (+g𝐹)
3 ipsubdir.s . . . 4 𝑆 = (-g𝐹)
4 ip2subdi.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 phllmod 21555 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 phlsrng.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
87lmodring 20789 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
96, 8syl 17 . . . . 5 (𝜑𝐹 ∈ Ring)
10 ringabl 20184 . . . . 5 (𝐹 ∈ Ring → 𝐹 ∈ Abel)
119, 10syl 17 . . . 4 (𝜑𝐹 ∈ Abel)
12 ip2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 ip2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
167, 14, 15, 1ipcl 21558 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
174, 12, 13, 16syl3anc 1373 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
18 ip2subdi.5 . . . . 5 (𝜑𝐷𝑉)
197, 14, 15, 1ipcl 21558 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
204, 12, 18, 19syl3anc 1373 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
21 ip2subdi.3 . . . . 5 (𝜑𝐵𝑉)
227, 14, 15, 1ipcl 21558 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
234, 21, 13, 22syl3anc 1373 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
241, 2, 3, 11, 17, 20, 23ablsubsub4 19715 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) = ((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
2524oveq1d 7368 . 2 (𝜑 → ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
26 ipsubdir.m . . . . . 6 = (-g𝑊)
2715, 26lmodvsubcl 20828 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 𝐷) ∈ 𝑉)
286, 13, 18, 27syl3anc 1373 . . . 4 (𝜑 → (𝐶 𝐷) ∈ 𝑉)
297, 14, 15, 26, 3ipsubdir 21567 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 𝐷) ∈ 𝑉)) → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
304, 12, 21, 28, 29syl13anc 1374 . . 3 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
317, 14, 15, 26, 3ipsubdi 21568 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
324, 12, 13, 18, 31syl13anc 1374 . . . 4 (𝜑 → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
337, 14, 15, 26, 3ipsubdi 21568 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
344, 21, 13, 18, 33syl13anc 1374 . . . 4 (𝜑 → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
3532, 34oveq12d 7371 . . 3 (𝜑 → ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))) = (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))))
36 ringgrp 20141 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
379, 36syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
381, 3grpsubcl 18917 . . . . 5 ((𝐹 ∈ Grp ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
3937, 17, 20, 38syl3anc 1373 . . . 4 (𝜑 → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
407, 14, 15, 1ipcl 21558 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
414, 21, 18, 40syl3anc 1373 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
421, 2, 3, 11, 39, 23, 41ablsubsub 19714 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
4330, 35, 423eqtrd 2768 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
441, 2ringacl 20181 . . . 4 ((𝐹 ∈ Ring ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹)) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
459, 20, 23, 44syl3anc 1373 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
461, 2, 3abladdsub 19709 . . 3 ((𝐹 ∈ Abel ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4711, 17, 41, 45, 46syl13anc 1374 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4825, 43, 473eqtr4d 2774 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182  ·𝑖cip 17184  Grpcgrp 18830  -gcsg 18832  Abelcabl 19678  Ringcrg 20136  LModclmod 20781  PreHilcphl 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-sbg 18835  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-oppr 20240  df-rhm 20375  df-staf 20742  df-srng 20743  df-lmod 20783  df-lmhm 20944  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-phl 21551
This theorem is referenced by:  cph2subdi  25126  ipcau2  25150  tcphcphlem1  25151
  Copyright terms: Public domain W3C validator