Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimres2 | Structured version Visualization version GIF version |
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimres2.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
rlimres2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) |
Ref | Expression |
---|---|
rlimres2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimres2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | resmptd 5937 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | rlimres2.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) | |
4 | rlimres 15195 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⇝𝑟 𝐷) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⇝𝑟 𝐷) |
6 | 2, 5 | eqbrtrrd 5094 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ↾ cres 5582 ⇝𝑟 crli 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-rlim 15126 |
This theorem is referenced by: divcnv 15493 dvfsumrlimge0 25099 dvfsumrlim2 25101 dfef2 26025 cxp2lim 26031 chtppilimlem2 26527 chpchtlim 26532 pnt2 26666 |
Copyright terms: Public domain | W3C validator |