MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres2 Structured version   Visualization version   GIF version

Theorem rlimres2 15270
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimres2.1 (𝜑𝐴𝐵)
rlimres2.2 (𝜑 → (𝑥𝐵𝐶) ⇝𝑟 𝐷)
Assertion
Ref Expression
rlimres2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem rlimres2
StepHypRef Expression
1 rlimres2.1 . . 3 (𝜑𝐴𝐵)
21resmptd 5948 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
3 rlimres2.2 . . 3 (𝜑 → (𝑥𝐵𝐶) ⇝𝑟 𝐷)
4 rlimres 15267 . . 3 ((𝑥𝐵𝐶) ⇝𝑟 𝐷 → ((𝑥𝐵𝐶) ↾ 𝐴) ⇝𝑟 𝐷)
53, 4syl 17 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) ⇝𝑟 𝐷)
62, 5eqbrtrrd 5098 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3887   class class class wbr 5074  cmpt 5157  cres 5591  𝑟 crli 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618  df-rlim 15198
This theorem is referenced by:  divcnv  15565  dvfsumrlimge0  25194  dvfsumrlim2  25196  dfef2  26120  cxp2lim  26126  chtppilimlem2  26622  chpchtlim  26627  pnt2  26761
  Copyright terms: Public domain W3C validator