| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimres2 | Structured version Visualization version GIF version | ||
| Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimres2.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| rlimres2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) |
| Ref | Expression |
|---|---|
| rlimres2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimres2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | resmptd 5988 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 3 | rlimres2.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) | |
| 4 | rlimres 15465 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⇝𝑟 𝐷) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⇝𝑟 𝐷) |
| 6 | 2, 5 | eqbrtrrd 5113 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ↾ cres 5616 ⇝𝑟 crli 15392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm 8753 df-rlim 15396 |
| This theorem is referenced by: divcnv 15760 dvfsumrlimge0 25964 dvfsumrlim2 25966 dfef2 26908 cxp2lim 26914 chtppilimlem2 27412 chpchtlim 27417 pnt2 27551 |
| Copyright terms: Public domain | W3C validator |