MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres2 Structured version   Visualization version   GIF version

Theorem rlimres2 15538
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimres2.1 (𝜑𝐴𝐵)
rlimres2.2 (𝜑 → (𝑥𝐵𝐶) ⇝𝑟 𝐷)
Assertion
Ref Expression
rlimres2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem rlimres2
StepHypRef Expression
1 rlimres2.1 . . 3 (𝜑𝐴𝐵)
21resmptd 6044 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
3 rlimres2.2 . . 3 (𝜑 → (𝑥𝐵𝐶) ⇝𝑟 𝐷)
4 rlimres 15535 . . 3 ((𝑥𝐵𝐶) ⇝𝑟 𝐷 → ((𝑥𝐵𝐶) ↾ 𝐴) ⇝𝑟 𝐷)
53, 4syl 17 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) ⇝𝑟 𝐷)
62, 5eqbrtrrd 5172 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3947   class class class wbr 5148  cmpt 5231  cres 5680  𝑟 crli 15462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-pm 8848  df-rlim 15466
This theorem is referenced by:  divcnv  15832  dvfsumrlimge0  25978  dvfsumrlim2  25980  dfef2  26916  cxp2lim  26922  chtppilimlem2  27420  chpchtlim  27425  pnt2  27559
  Copyright terms: Public domain W3C validator