MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres2 Structured version   Visualization version   GIF version

Theorem rlimres2 15582
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimres2.1 (𝜑𝐴𝐵)
rlimres2.2 (𝜑 → (𝑥𝐵𝐶) ⇝𝑟 𝐷)
Assertion
Ref Expression
rlimres2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem rlimres2
StepHypRef Expression
1 rlimres2.1 . . 3 (𝜑𝐴𝐵)
21resmptd 6032 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
3 rlimres2.2 . . 3 (𝜑 → (𝑥𝐵𝐶) ⇝𝑟 𝐷)
4 rlimres 15579 . . 3 ((𝑥𝐵𝐶) ⇝𝑟 𝐷 → ((𝑥𝐵𝐶) ↾ 𝐴) ⇝𝑟 𝐷)
53, 4syl 17 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) ⇝𝑟 𝐷)
62, 5eqbrtrrd 5148 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3931   class class class wbr 5124  cmpt 5206  cres 5661  𝑟 crli 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-pm 8848  df-rlim 15510
This theorem is referenced by:  divcnv  15874  dvfsumrlimge0  25994  dvfsumrlim2  25996  dfef2  26938  cxp2lim  26944  chtppilimlem2  27442  chpchtlim  27447  pnt2  27581
  Copyright terms: Public domain W3C validator