![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimres2 | Structured version Visualization version GIF version |
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimres2.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
rlimres2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) |
Ref | Expression |
---|---|
rlimres2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimres2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | resmptd 6044 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | rlimres2.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) | |
4 | rlimres 15535 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⇝𝑟 𝐷) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⇝𝑟 𝐷) |
6 | 2, 5 | eqbrtrrd 5172 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 class class class wbr 5148 ↦ cmpt 5231 ↾ cres 5680 ⇝𝑟 crli 15462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-pm 8848 df-rlim 15466 |
This theorem is referenced by: divcnv 15832 dvfsumrlimge0 25978 dvfsumrlim2 25980 dfef2 26916 cxp2lim 26922 chtppilimlem2 27420 chpchtlim 27425 pnt2 27559 |
Copyright terms: Public domain | W3C validator |