![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lo1res2 | Structured version Visualization version GIF version |
Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
rlimres2.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
lo1res2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1)) |
Ref | Expression |
---|---|
lo1res2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimres2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | resmptd 6038 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | lo1res2.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1)) | |
4 | lo1res 15499 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1) → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ ≤𝑂(1)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ ≤𝑂(1)) |
6 | 2, 5 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3947 ↦ cmpt 5230 ↾ cres 5677 ≤𝑂(1)clo1 15427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ico 13326 df-lo1 15431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |