MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res2 Structured version   Visualization version   GIF version

Theorem lo1res2 15599
Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rlimres2.1 (𝜑𝐴𝐵)
lo1res2.2 (𝜑 → (𝑥𝐵𝐶) ∈ ≤𝑂(1))
Assertion
Ref Expression
lo1res2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem lo1res2
StepHypRef Expression
1 rlimres2.1 . . 3 (𝜑𝐴𝐵)
21resmptd 6057 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
3 lo1res2.2 . . 3 (𝜑 → (𝑥𝐵𝐶) ∈ ≤𝑂(1))
4 lo1res 15596 . . 3 ((𝑥𝐵𝐶) ∈ ≤𝑂(1) → ((𝑥𝐵𝐶) ↾ 𝐴) ∈ ≤𝑂(1))
53, 4syl 17 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) ∈ ≤𝑂(1))
62, 5eqeltrrd 2841 1 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3950  cmpt 5224  cres 5686  ≤𝑂(1)clo1 15524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-ico 13394  df-lo1 15528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator