MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem2 Structured version   Visualization version   GIF version

Theorem chtppilimlem2 27413
Description: Lemma for chtppilim 27414. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
Assertion
Ref Expression
chtppilimlem2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝜑,𝑥,𝑧

Proof of Theorem chtppilimlem2
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
2 2re 12206 . . . . . . . . . 10 2 ∈ ℝ
3 elicopnf 13347 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
42, 3ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
51, 4sylib 218 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
7 0red 11122 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
82a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
9 2pos 12235 . . . . . . . . 9 0 < 2
109a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 2)
115simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11280 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
136, 12elrpd 12933 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
14 chtppilim.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
1514rpred 12936 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1615adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℝ)
1713, 16rpcxpcld 26670 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) ∈ ℝ+)
18 ppinncl 27112 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
195, 18syl 17 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
2019nnrpd 12934 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
2117, 20rpdivcld 12953 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
2221ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ (2[,)+∞)((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
23 chtppilim.2 . . . 4 (𝜑𝐴 < 1)
24 1re 11119 . . . . 5 1 ∈ ℝ
25 difrp 12932 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2615, 24, 25sylancl 586 . . . 4 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2723, 26mpbid 232 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ+)
28 ovexd 7387 . . . . . 6 (𝜑 → (2[,)+∞) ∈ V)
2924a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
30 1lt2 12298 . . . . . . . . . . 11 1 < 2
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 2)
3229, 8, 6, 31, 11ltletrd 11280 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
336, 32rplogcld 26566 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
3413, 33rpdivcld 12953 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
3534, 20rpdivcld 12953 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
3627adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ+)
3736rpred 12936 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ)
3813, 37rpcxpcld 26670 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − 𝐴)) ∈ ℝ+)
3933, 38rpdivcld 12953 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℝ+)
40 eqidd 2734 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))))
41 eqidd 2734 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4228, 35, 39, 40, 41offval2 7636 . . . . 5 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))))
4334rpcnd 12938 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℂ)
4439rpcnd 12938 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ)
4520rpcnne0d 12945 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0))
46 div23 11802 . . . . . . . 8 (((𝑥 / (log‘𝑥)) ∈ ℂ ∧ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ ∧ ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4743, 44, 45, 46syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4833rpcnne0d 12945 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
4938rpcnne0d 12945 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0))
506recnd 11147 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
51 dmdcan 11838 . . . . . . . . . 10 ((((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0) ∧ ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0) ∧ 𝑥 ∈ ℂ) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5248, 49, 50, 51syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5343, 44mulcomd 11140 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))))
5413rpcnne0d 12945 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
55 ax-1cn 11071 . . . . . . . . . . . . 13 1 ∈ ℂ
5655a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5736rpcnd 12938 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℂ)
58 cxpsub 26619 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
5954, 56, 57, 58syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
6016recnd 11147 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℂ)
61 nncan 11397 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
6255, 60, 61sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − (1 − 𝐴)) = 𝐴)
6362oveq2d 7368 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = (𝑥𝑐𝐴))
6459, 63eqtr3d 2770 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥𝑐𝐴))
6550cxp1d 26643 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐1) = 𝑥)
6665oveq1d 7367 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6764, 66eqtr3d 2770 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6852, 53, 673eqtr4d 2778 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥𝑐𝐴))
6968oveq1d 7367 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = ((𝑥𝑐𝐴) / (π𝑥)))
7047, 69eqtr3d 2770 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = ((𝑥𝑐𝐴) / (π𝑥)))
7170mpteq2dva 5186 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
7242, 71eqtrd 2768 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
73 chebbnd1 27411 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
7413ex 412 . . . . . . 7 (𝜑 → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
7574ssrdv 3936 . . . . . 6 (𝜑 → (2[,)+∞) ⊆ ℝ+)
76 cxploglim 26916 . . . . . . 7 ((1 − 𝐴) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7727, 76syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7875, 77rlimres2 15470 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
79 o1rlimmul 15528 . . . . 5 (((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8073, 78, 79sylancr 587 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8172, 80eqbrtrrd 5117 . . 3 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))) ⇝𝑟 0)
8222, 27, 81rlimi 15422 . 2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)))
8321rpcnd 12938 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℂ)
8483subid1d 11468 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) − 0) = ((𝑥𝑐𝐴) / (π𝑥)))
8584fveq2d 6832 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = (abs‘((𝑥𝑐𝐴) / (π𝑥))))
8621rpred 12936 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ)
8721rpge0d 12940 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ≤ ((𝑥𝑐𝐴) / (π𝑥)))
8886, 87absidd 15332 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘((𝑥𝑐𝐴) / (π𝑥))) = ((𝑥𝑐𝐴) / (π𝑥)))
8985, 88eqtrd 2768 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = ((𝑥𝑐𝐴) / (π𝑥)))
9089breq1d 5103 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) ↔ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴)))
9114adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 ∈ ℝ+)
9223adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 < 1)
93 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝑥 ∈ (2[,)+∞))
94 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))
9591, 92, 93, 94chtppilimlem1 27412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))
9695expr 456 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9790, 96sylbid 240 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9897imim2d 57 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → (𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
9998ralimdva 3145 . . 3 (𝜑 → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10099reximdv 3148 . 2 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10182, 100mpd 15 1 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  f cof 7614  cc 11011  cr 11012  0cc0 11013  1c1 11014   · cmul 11018  +∞cpnf 11150   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  +crp 12892  [,)cico 13249  cexp 13970  abscabs 15143  𝑟 crli 15394  𝑂(1)co1 15395  logclog 26491  𝑐ccxp 26492  θccht 27029  πcppi 27032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-o1 15399  df-lo1 15400  df-sum 15596  df-ef 15976  df-e 15977  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-gcd 16408  df-prm 16585  df-pc 16751  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494  df-cht 27035  df-ppi 27038
This theorem is referenced by:  chtppilim  27414
  Copyright terms: Public domain W3C validator