MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem2 Structured version   Visualization version   GIF version

Theorem chtppilimlem2 27410
Description: Lemma for chtppilim 27411. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
Assertion
Ref Expression
chtppilimlem2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝜑,𝑥,𝑧

Proof of Theorem chtppilimlem2
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
2 2re 12196 . . . . . . . . . 10 2 ∈ ℝ
3 elicopnf 13342 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
42, 3ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
51, 4sylib 218 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
7 0red 11112 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
82a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
9 2pos 12225 . . . . . . . . 9 0 < 2
109a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 2)
115simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11270 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
136, 12elrpd 12928 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
14 chtppilim.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
1514rpred 12931 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1615adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℝ)
1713, 16rpcxpcld 26667 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) ∈ ℝ+)
18 ppinncl 27109 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
195, 18syl 17 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
2019nnrpd 12929 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
2117, 20rpdivcld 12948 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
2221ralrimiva 3124 . . 3 (𝜑 → ∀𝑥 ∈ (2[,)+∞)((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
23 chtppilim.2 . . . 4 (𝜑𝐴 < 1)
24 1re 11109 . . . . 5 1 ∈ ℝ
25 difrp 12927 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2615, 24, 25sylancl 586 . . . 4 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2723, 26mpbid 232 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ+)
28 ovexd 7381 . . . . . 6 (𝜑 → (2[,)+∞) ∈ V)
2924a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
30 1lt2 12288 . . . . . . . . . . 11 1 < 2
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 2)
3229, 8, 6, 31, 11ltletrd 11270 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
336, 32rplogcld 26563 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
3413, 33rpdivcld 12948 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
3534, 20rpdivcld 12948 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
3627adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ+)
3736rpred 12931 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ)
3813, 37rpcxpcld 26667 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − 𝐴)) ∈ ℝ+)
3933, 38rpdivcld 12948 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℝ+)
40 eqidd 2732 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))))
41 eqidd 2732 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4228, 35, 39, 40, 41offval2 7630 . . . . 5 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))))
4334rpcnd 12933 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℂ)
4439rpcnd 12933 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ)
4520rpcnne0d 12940 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0))
46 div23 11792 . . . . . . . 8 (((𝑥 / (log‘𝑥)) ∈ ℂ ∧ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ ∧ ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4743, 44, 45, 46syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4833rpcnne0d 12940 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
4938rpcnne0d 12940 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0))
506recnd 11137 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
51 dmdcan 11828 . . . . . . . . . 10 ((((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0) ∧ ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0) ∧ 𝑥 ∈ ℂ) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5248, 49, 50, 51syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5343, 44mulcomd 11130 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))))
5413rpcnne0d 12940 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
55 ax-1cn 11061 . . . . . . . . . . . . 13 1 ∈ ℂ
5655a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5736rpcnd 12933 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℂ)
58 cxpsub 26616 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
5954, 56, 57, 58syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
6016recnd 11137 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℂ)
61 nncan 11387 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
6255, 60, 61sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − (1 − 𝐴)) = 𝐴)
6362oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = (𝑥𝑐𝐴))
6459, 63eqtr3d 2768 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥𝑐𝐴))
6550cxp1d 26640 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐1) = 𝑥)
6665oveq1d 7361 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6764, 66eqtr3d 2768 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6852, 53, 673eqtr4d 2776 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥𝑐𝐴))
6968oveq1d 7361 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = ((𝑥𝑐𝐴) / (π𝑥)))
7047, 69eqtr3d 2768 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = ((𝑥𝑐𝐴) / (π𝑥)))
7170mpteq2dva 5184 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
7242, 71eqtrd 2766 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
73 chebbnd1 27408 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
7413ex 412 . . . . . . 7 (𝜑 → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
7574ssrdv 3940 . . . . . 6 (𝜑 → (2[,)+∞) ⊆ ℝ+)
76 cxploglim 26913 . . . . . . 7 ((1 − 𝐴) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7727, 76syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7875, 77rlimres2 15465 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
79 o1rlimmul 15523 . . . . 5 (((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8073, 78, 79sylancr 587 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8172, 80eqbrtrrd 5115 . . 3 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))) ⇝𝑟 0)
8222, 27, 81rlimi 15417 . 2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)))
8321rpcnd 12933 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℂ)
8483subid1d 11458 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) − 0) = ((𝑥𝑐𝐴) / (π𝑥)))
8584fveq2d 6826 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = (abs‘((𝑥𝑐𝐴) / (π𝑥))))
8621rpred 12931 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ)
8721rpge0d 12935 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ≤ ((𝑥𝑐𝐴) / (π𝑥)))
8886, 87absidd 15327 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘((𝑥𝑐𝐴) / (π𝑥))) = ((𝑥𝑐𝐴) / (π𝑥)))
8985, 88eqtrd 2766 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = ((𝑥𝑐𝐴) / (π𝑥)))
9089breq1d 5101 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) ↔ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴)))
9114adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 ∈ ℝ+)
9223adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 < 1)
93 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝑥 ∈ (2[,)+∞))
94 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))
9591, 92, 93, 94chtppilimlem1 27409 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))
9695expr 456 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9790, 96sylbid 240 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9897imim2d 57 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → (𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
9998ralimdva 3144 . . 3 (𝜑 → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10099reximdv 3147 . 2 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10182, 100mpd 15 1 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  f cof 7608  cc 11001  cr 11002  0cc0 11003  1c1 11004   · cmul 11008  +∞cpnf 11140   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  cn 12122  2c2 12177  +crp 12887  [,)cico 13244  cexp 13965  abscabs 15138  𝑟 crli 15389  𝑂(1)co1 15390  logclog 26488  𝑐ccxp 26489  θccht 27026  πcppi 27029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-o1 15394  df-lo1 15395  df-sum 15591  df-ef 15971  df-e 15972  df-sin 15973  df-cos 15974  df-pi 15976  df-dvds 16161  df-gcd 16403  df-prm 16580  df-pc 16746  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-cxp 26491  df-cht 27032  df-ppi 27035
This theorem is referenced by:  chtppilim  27411
  Copyright terms: Public domain W3C validator