Proof of Theorem chtppilimlem2
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈
(2[,)+∞)) |
| 2 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 3 | | elicopnf 13485 |
. . . . . . . . . 10
⊢ (2 ∈
ℝ → (𝑥 ∈
(2[,)+∞) ↔ (𝑥
∈ ℝ ∧ 2 ≤ 𝑥))) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 2
≤ 𝑥)) |
| 5 | 1, 4 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤
𝑥)) |
| 6 | 5 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈
ℝ) |
| 7 | | 0red 11264 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 0 ∈
ℝ) |
| 8 | 2 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈
ℝ) |
| 9 | | 2pos 12369 |
. . . . . . . . 9
⊢ 0 <
2 |
| 10 | 9 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 0 <
2) |
| 11 | 5 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥) |
| 12 | 7, 8, 6, 10, 11 | ltletrd 11421 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 𝑥) |
| 13 | 6, 12 | elrpd 13074 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈
ℝ+) |
| 14 | | chtppilim.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 15 | 14 | rpred 13077 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 𝐴 ∈
ℝ) |
| 17 | 13, 16 | rpcxpcld 26775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥↑𝑐𝐴) ∈
ℝ+) |
| 18 | | ppinncl 27217 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 2 ≤
𝑥) →
(π‘𝑥)
∈ ℕ) |
| 19 | 5, 18 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(π‘𝑥)
∈ ℕ) |
| 20 | 19 | nnrpd 13075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(π‘𝑥)
∈ ℝ+) |
| 21 | 17, 20 | rpdivcld 13094 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥↑𝑐𝐴) / (π‘𝑥)) ∈
ℝ+) |
| 22 | 21 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (2[,)+∞)((𝑥↑𝑐𝐴) / (π‘𝑥)) ∈
ℝ+) |
| 23 | | chtppilim.2 |
. . . 4
⊢ (𝜑 → 𝐴 < 1) |
| 24 | | 1re 11261 |
. . . . 5
⊢ 1 ∈
ℝ |
| 25 | | difrp 13073 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐴 < 1
↔ (1 − 𝐴) ∈
ℝ+)) |
| 26 | 15, 24, 25 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈
ℝ+)) |
| 27 | 23, 26 | mpbid 232 |
. . 3
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ+) |
| 28 | | ovexd 7466 |
. . . . . 6
⊢ (𝜑 → (2[,)+∞) ∈
V) |
| 29 | 24 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈
ℝ) |
| 30 | | 1lt2 12437 |
. . . . . . . . . . 11
⊢ 1 <
2 |
| 31 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 1 <
2) |
| 32 | 29, 8, 6, 31, 11 | ltletrd 11421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 𝑥) |
| 33 | 6, 32 | rplogcld 26671 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(log‘𝑥) ∈
ℝ+) |
| 34 | 13, 33 | rpdivcld 13094 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈
ℝ+) |
| 35 | 34, 20 | rpdivcld 13094 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈
ℝ+) |
| 36 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (1 −
𝐴) ∈
ℝ+) |
| 37 | 36 | rpred 13077 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (1 −
𝐴) ∈
ℝ) |
| 38 | 13, 37 | rpcxpcld 26775 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥↑𝑐(1
− 𝐴)) ∈
ℝ+) |
| 39 | 33, 38 | rpdivcld 13094 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))) ∈
ℝ+) |
| 40 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥)))) |
| 41 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴)))) = (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))))) |
| 42 | 28, 35, 39, 40, 41 | offval2 7717 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦
(((𝑥 / (log‘𝑥)) / (π‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))))) |
| 43 | 34 | rpcnd 13079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℂ) |
| 44 | 39 | rpcnd 13079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))) ∈
ℂ) |
| 45 | 20 | rpcnne0d 13086 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
((π‘𝑥)
∈ ℂ ∧ (π‘𝑥) ≠ 0)) |
| 46 | | div23 11941 |
. . . . . . . 8
⊢ (((𝑥 / (log‘𝑥)) ∈ ℂ ∧ ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴))) ∈ ℂ ∧
((π‘𝑥)
∈ ℂ ∧ (π‘𝑥) ≠ 0)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))) / (π‘𝑥)) = (((𝑥 / (log‘𝑥)) / (π‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴))))) |
| 47 | 43, 44, 45, 46 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))) / (π‘𝑥)) = (((𝑥 / (log‘𝑥)) / (π‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴))))) |
| 48 | 33 | rpcnne0d 13086 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
((log‘𝑥) ∈
ℂ ∧ (log‘𝑥)
≠ 0)) |
| 49 | 38 | rpcnne0d 13086 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥↑𝑐(1
− 𝐴)) ∈ ℂ
∧ (𝑥↑𝑐(1 − 𝐴)) ≠ 0)) |
| 50 | 6 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈
ℂ) |
| 51 | | dmdcan 11977 |
. . . . . . . . . 10
⊢
((((log‘𝑥)
∈ ℂ ∧ (log‘𝑥) ≠ 0) ∧ ((𝑥↑𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥↑𝑐(1
− 𝐴)) ≠ 0) ∧
𝑥 ∈ ℂ) →
(((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))) ·
(𝑥 / (log‘𝑥))) = (𝑥 / (𝑥↑𝑐(1 − 𝐴)))) |
| 52 | 48, 49, 50, 51 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))) ·
(𝑥 / (log‘𝑥))) = (𝑥 / (𝑥↑𝑐(1 − 𝐴)))) |
| 53 | 43, 44 | mulcomd 11282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))) = (((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥)))) |
| 54 | 13 | rpcnne0d 13086 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 55 | | ax-1cn 11213 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 56 | 55 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈
ℂ) |
| 57 | 36 | rpcnd 13079 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (1 −
𝐴) ∈
ℂ) |
| 58 | | cxpsub 26724 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ
∧ (1 − 𝐴) ∈
ℂ) → (𝑥↑𝑐(1 − (1
− 𝐴))) = ((𝑥↑𝑐1) /
(𝑥↑𝑐(1 − 𝐴)))) |
| 59 | 54, 56, 57, 58 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥↑𝑐(1
− (1 − 𝐴))) =
((𝑥↑𝑐1) / (𝑥↑𝑐(1
− 𝐴)))) |
| 60 | 16 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 𝐴 ∈
ℂ) |
| 61 | | nncan 11538 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴) |
| 62 | 55, 60, 61 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (1 − (1
− 𝐴)) = 𝐴) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥↑𝑐(1
− (1 − 𝐴))) =
(𝑥↑𝑐𝐴)) |
| 64 | 59, 63 | eqtr3d 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥↑𝑐1) /
(𝑥↑𝑐(1 − 𝐴))) = (𝑥↑𝑐𝐴)) |
| 65 | 50 | cxp1d 26748 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥↑𝑐1) =
𝑥) |
| 66 | 65 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥↑𝑐1) /
(𝑥↑𝑐(1 − 𝐴))) = (𝑥 / (𝑥↑𝑐(1 − 𝐴)))) |
| 67 | 64, 66 | eqtr3d 2779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥↑𝑐𝐴) = (𝑥 / (𝑥↑𝑐(1 − 𝐴)))) |
| 68 | 52, 53, 67 | 3eqtr4d 2787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))) = (𝑥↑𝑐𝐴)) |
| 69 | 68 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))) / (π‘𝑥)) = ((𝑥↑𝑐𝐴) / (π‘𝑥))) |
| 70 | 47, 69 | eqtr3d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴)))) = ((𝑥↑𝑐𝐴) / (π‘𝑥))) |
| 71 | 70 | mpteq2dva 5242 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) · ((log‘𝑥) / (𝑥↑𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥↑𝑐𝐴) / (π‘𝑥)))) |
| 72 | 42, 71 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦
((𝑥↑𝑐𝐴) / (π‘𝑥)))) |
| 73 | | chebbnd1 27516 |
. . . . 5
⊢ (𝑥 ∈ (2[,)+∞) ↦
((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∈
𝑂(1) |
| 74 | 13 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈
ℝ+)) |
| 75 | 74 | ssrdv 3989 |
. . . . . 6
⊢ (𝜑 → (2[,)+∞) ⊆
ℝ+) |
| 76 | | cxploglim 27021 |
. . . . . . 7
⊢ ((1
− 𝐴) ∈
ℝ+ → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))))
⇝𝑟 0) |
| 77 | 27, 76 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))))
⇝𝑟 0) |
| 78 | 75, 77 | rlimres2 15597 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴))))
⇝𝑟 0) |
| 79 | | o1rlimmul 15655 |
. . . . 5
⊢ (((𝑥 ∈ (2[,)+∞) ↦
((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∈ 𝑂(1) ∧
(𝑥 ∈ (2[,)+∞)
↦ ((log‘𝑥) /
(𝑥↑𝑐(1 − 𝐴)))) ⇝𝑟
0) → ((𝑥 ∈
(2[,)+∞) ↦ ((𝑥
/ (log‘𝑥)) /
(π‘𝑥)))
∘f · (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴)))))
⇝𝑟 0) |
| 80 | 73, 78, 79 | sylancr 587 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦
((log‘𝑥) / (𝑥↑𝑐(1
− 𝐴)))))
⇝𝑟 0) |
| 81 | 72, 80 | eqbrtrrd 5167 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥↑𝑐𝐴) / (π‘𝑥))) ⇝𝑟
0) |
| 82 | 22, 27, 81 | rlimi 15549 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → (abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) < (1 − 𝐴))) |
| 83 | 21 | rpcnd 13079 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥↑𝑐𝐴) / (π‘𝑥)) ∈
ℂ) |
| 84 | 83 | subid1d 11609 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0) = ((𝑥↑𝑐𝐴) / (π‘𝑥))) |
| 85 | 84 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) = (abs‘((𝑥↑𝑐𝐴) / (π‘𝑥)))) |
| 86 | 21 | rpred 13077 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥↑𝑐𝐴) / (π‘𝑥)) ∈
ℝ) |
| 87 | 21 | rpge0d 13081 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → 0 ≤ ((𝑥↑𝑐𝐴) / (π‘𝑥))) |
| 88 | 86, 87 | absidd 15461 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(abs‘((𝑥↑𝑐𝐴) / (π‘𝑥))) = ((𝑥↑𝑐𝐴) / (π‘𝑥))) |
| 89 | 85, 88 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
(abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) = ((𝑥↑𝑐𝐴) / (π‘𝑥))) |
| 90 | 89 | breq1d 5153 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
((abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) < (1 − 𝐴) ↔ ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴))) |
| 91 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴))) → 𝐴 ∈
ℝ+) |
| 92 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴))) → 𝐴 < 1) |
| 93 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴))) → 𝑥 ∈ (2[,)+∞)) |
| 94 | | simprr 773 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴))) → ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴)) |
| 95 | 91, 92, 93, 94 | chtppilimlem1 27517 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴))) → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥)) |
| 96 | 95 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → (((𝑥↑𝑐𝐴) / (π‘𝑥)) < (1 − 𝐴) → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥))) |
| 97 | 90, 96 | sylbid 240 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) →
((abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) < (1 − 𝐴) → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥))) |
| 98 | 97 | imim2d 57 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑧 ≤ 𝑥 → (abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) < (1 − 𝐴)) → (𝑧 ≤ 𝑥 → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥)))) |
| 99 | 98 | ralimdva 3167 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → (abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) < (1 − 𝐴)) → ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥)))) |
| 100 | 99 | reximdv 3170 |
. 2
⊢ (𝜑 → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → (abs‘(((𝑥↑𝑐𝐴) / (π‘𝑥)) − 0)) < (1 − 𝐴)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥)))) |
| 101 | 82, 100 | mpd 15 |
1
⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥))) |