MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem2 Structured version   Visualization version   GIF version

Theorem chtppilimlem2 26622
Description: Lemma for chtppilim 26623. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
Assertion
Ref Expression
chtppilimlem2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝜑,𝑥,𝑧

Proof of Theorem chtppilimlem2
StepHypRef Expression
1 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
2 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
3 elicopnf 13177 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
42, 3ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
51, 4sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simpld 495 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
7 0red 10978 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
82a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
9 2pos 12076 . . . . . . . . 9 0 < 2
109a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 2)
115simprd 496 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11135 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
136, 12elrpd 12769 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
14 chtppilim.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
1514rpred 12772 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1615adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℝ)
1713, 16rpcxpcld 25887 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) ∈ ℝ+)
18 ppinncl 26323 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
195, 18syl 17 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
2019nnrpd 12770 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
2117, 20rpdivcld 12789 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
2221ralrimiva 3103 . . 3 (𝜑 → ∀𝑥 ∈ (2[,)+∞)((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
23 chtppilim.2 . . . 4 (𝜑𝐴 < 1)
24 1re 10975 . . . . 5 1 ∈ ℝ
25 difrp 12768 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2615, 24, 25sylancl 586 . . . 4 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2723, 26mpbid 231 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ+)
28 ovexd 7310 . . . . . 6 (𝜑 → (2[,)+∞) ∈ V)
2924a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
30 1lt2 12144 . . . . . . . . . . 11 1 < 2
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 2)
3229, 8, 6, 31, 11ltletrd 11135 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
336, 32rplogcld 25784 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
3413, 33rpdivcld 12789 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
3534, 20rpdivcld 12789 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
3627adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ+)
3736rpred 12772 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ)
3813, 37rpcxpcld 25887 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − 𝐴)) ∈ ℝ+)
3933, 38rpdivcld 12789 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℝ+)
40 eqidd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))))
41 eqidd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4228, 35, 39, 40, 41offval2 7553 . . . . 5 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))))
4334rpcnd 12774 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℂ)
4439rpcnd 12774 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ)
4520rpcnne0d 12781 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0))
46 div23 11652 . . . . . . . 8 (((𝑥 / (log‘𝑥)) ∈ ℂ ∧ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ ∧ ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4743, 44, 45, 46syl3anc 1370 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4833rpcnne0d 12781 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
4938rpcnne0d 12781 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0))
506recnd 11003 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
51 dmdcan 11685 . . . . . . . . . 10 ((((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0) ∧ ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0) ∧ 𝑥 ∈ ℂ) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5248, 49, 50, 51syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5343, 44mulcomd 10996 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))))
5413rpcnne0d 12781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
55 ax-1cn 10929 . . . . . . . . . . . . 13 1 ∈ ℂ
5655a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5736rpcnd 12774 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℂ)
58 cxpsub 25837 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
5954, 56, 57, 58syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
6016recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℂ)
61 nncan 11250 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
6255, 60, 61sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − (1 − 𝐴)) = 𝐴)
6362oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = (𝑥𝑐𝐴))
6459, 63eqtr3d 2780 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥𝑐𝐴))
6550cxp1d 25861 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐1) = 𝑥)
6665oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6764, 66eqtr3d 2780 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6852, 53, 673eqtr4d 2788 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥𝑐𝐴))
6968oveq1d 7290 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = ((𝑥𝑐𝐴) / (π𝑥)))
7047, 69eqtr3d 2780 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = ((𝑥𝑐𝐴) / (π𝑥)))
7170mpteq2dva 5174 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
7242, 71eqtrd 2778 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
73 chebbnd1 26620 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
7413ex 413 . . . . . . 7 (𝜑 → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
7574ssrdv 3927 . . . . . 6 (𝜑 → (2[,)+∞) ⊆ ℝ+)
76 cxploglim 26127 . . . . . . 7 ((1 − 𝐴) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7727, 76syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7875, 77rlimres2 15270 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
79 o1rlimmul 15328 . . . . 5 (((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8073, 78, 79sylancr 587 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8172, 80eqbrtrrd 5098 . . 3 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))) ⇝𝑟 0)
8222, 27, 81rlimi 15222 . 2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)))
8321rpcnd 12774 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℂ)
8483subid1d 11321 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) − 0) = ((𝑥𝑐𝐴) / (π𝑥)))
8584fveq2d 6778 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = (abs‘((𝑥𝑐𝐴) / (π𝑥))))
8621rpred 12772 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ)
8721rpge0d 12776 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ≤ ((𝑥𝑐𝐴) / (π𝑥)))
8886, 87absidd 15134 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘((𝑥𝑐𝐴) / (π𝑥))) = ((𝑥𝑐𝐴) / (π𝑥)))
8985, 88eqtrd 2778 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = ((𝑥𝑐𝐴) / (π𝑥)))
9089breq1d 5084 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) ↔ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴)))
9114adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 ∈ ℝ+)
9223adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 < 1)
93 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝑥 ∈ (2[,)+∞))
94 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))
9591, 92, 93, 94chtppilimlem1 26621 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))
9695expr 457 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9790, 96sylbid 239 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9897imim2d 57 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → (𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
9998ralimdva 3108 . . 3 (𝜑 → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10099reximdv 3202 . 2 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10182, 100mpd 15 1 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  +crp 12730  [,)cico 13081  cexp 13782  abscabs 14945  𝑟 crli 15194  𝑂(1)co1 15195  logclog 25710  𝑐ccxp 25711  θccht 26240  πcppi 26243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-cht 26246  df-ppi 26249
This theorem is referenced by:  chtppilim  26623
  Copyright terms: Public domain W3C validator