MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem2 Structured version   Visualization version   GIF version

Theorem chtppilimlem2 26157
Description: Lemma for chtppilim 26158. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
Assertion
Ref Expression
chtppilimlem2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝜑,𝑥,𝑧

Proof of Theorem chtppilimlem2
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
2 2re 11748 . . . . . . . . . 10 2 ∈ ℝ
3 elicopnf 12877 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
42, 3ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
51, 4sylib 221 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simpld 498 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
7 0red 10682 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
82a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
9 2pos 11777 . . . . . . . . 9 0 < 2
109a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 2)
115simprd 499 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 10838 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
136, 12elrpd 12469 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
14 chtppilim.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
1514rpred 12472 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1615adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℝ)
1713, 16rpcxpcld 25422 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) ∈ ℝ+)
18 ppinncl 25858 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
195, 18syl 17 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
2019nnrpd 12470 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
2117, 20rpdivcld 12489 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
2221ralrimiva 3113 . . 3 (𝜑 → ∀𝑥 ∈ (2[,)+∞)((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
23 chtppilim.2 . . . 4 (𝜑𝐴 < 1)
24 1re 10679 . . . . 5 1 ∈ ℝ
25 difrp 12468 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2615, 24, 25sylancl 589 . . . 4 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2723, 26mpbid 235 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ+)
28 ovexd 7185 . . . . . 6 (𝜑 → (2[,)+∞) ∈ V)
2924a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
30 1lt2 11845 . . . . . . . . . . 11 1 < 2
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 2)
3229, 8, 6, 31, 11ltletrd 10838 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
336, 32rplogcld 25319 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
3413, 33rpdivcld 12489 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
3534, 20rpdivcld 12489 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
3627adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ+)
3736rpred 12472 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ)
3813, 37rpcxpcld 25422 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − 𝐴)) ∈ ℝ+)
3933, 38rpdivcld 12489 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℝ+)
40 eqidd 2759 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))))
41 eqidd 2759 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4228, 35, 39, 40, 41offval2 7424 . . . . 5 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))))
4334rpcnd 12474 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℂ)
4439rpcnd 12474 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ)
4520rpcnne0d 12481 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0))
46 div23 11355 . . . . . . . 8 (((𝑥 / (log‘𝑥)) ∈ ℂ ∧ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ ∧ ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4743, 44, 45, 46syl3anc 1368 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4833rpcnne0d 12481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
4938rpcnne0d 12481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0))
506recnd 10707 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
51 dmdcan 11388 . . . . . . . . . 10 ((((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0) ∧ ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0) ∧ 𝑥 ∈ ℂ) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5248, 49, 50, 51syl3anc 1368 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5343, 44mulcomd 10700 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))))
5413rpcnne0d 12481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
55 ax-1cn 10633 . . . . . . . . . . . . 13 1 ∈ ℂ
5655a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5736rpcnd 12474 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℂ)
58 cxpsub 25372 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
5954, 56, 57, 58syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
6016recnd 10707 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℂ)
61 nncan 10953 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
6255, 60, 61sylancr 590 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − (1 − 𝐴)) = 𝐴)
6362oveq2d 7166 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = (𝑥𝑐𝐴))
6459, 63eqtr3d 2795 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥𝑐𝐴))
6550cxp1d 25396 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐1) = 𝑥)
6665oveq1d 7165 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6764, 66eqtr3d 2795 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6852, 53, 673eqtr4d 2803 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥𝑐𝐴))
6968oveq1d 7165 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = ((𝑥𝑐𝐴) / (π𝑥)))
7047, 69eqtr3d 2795 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = ((𝑥𝑐𝐴) / (π𝑥)))
7170mpteq2dva 5127 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
7242, 71eqtrd 2793 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
73 chebbnd1 26155 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
7413ex 416 . . . . . . 7 (𝜑 → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
7574ssrdv 3898 . . . . . 6 (𝜑 → (2[,)+∞) ⊆ ℝ+)
76 cxploglim 25662 . . . . . . 7 ((1 − 𝐴) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7727, 76syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7875, 77rlimres2 14966 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
79 o1rlimmul 15023 . . . . 5 (((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8073, 78, 79sylancr 590 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8172, 80eqbrtrrd 5056 . . 3 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))) ⇝𝑟 0)
8222, 27, 81rlimi 14918 . 2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)))
8321rpcnd 12474 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℂ)
8483subid1d 11024 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) − 0) = ((𝑥𝑐𝐴) / (π𝑥)))
8584fveq2d 6662 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = (abs‘((𝑥𝑐𝐴) / (π𝑥))))
8621rpred 12472 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ)
8721rpge0d 12476 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ≤ ((𝑥𝑐𝐴) / (π𝑥)))
8886, 87absidd 14830 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘((𝑥𝑐𝐴) / (π𝑥))) = ((𝑥𝑐𝐴) / (π𝑥)))
8985, 88eqtrd 2793 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = ((𝑥𝑐𝐴) / (π𝑥)))
9089breq1d 5042 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) ↔ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴)))
9114adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 ∈ ℝ+)
9223adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 < 1)
93 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝑥 ∈ (2[,)+∞))
94 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))
9591, 92, 93, 94chtppilimlem1 26156 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))
9695expr 460 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9790, 96sylbid 243 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9897imim2d 57 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → (𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
9998ralimdva 3108 . . 3 (𝜑 → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10099reximdv 3197 . 2 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10182, 100mpd 15 1 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  Vcvv 3409   class class class wbr 5032  cmpt 5112  cfv 6335  (class class class)co 7150  f cof 7403  cc 10573  cr 10574  0cc0 10575  1c1 10576   · cmul 10580  +∞cpnf 10710   < clt 10713  cle 10714  cmin 10908   / cdiv 11335  cn 11674  2c2 11729  +crp 12430  [,)cico 12781  cexp 13479  abscabs 14641  𝑟 crli 14890  𝑂(1)co1 14891  logclog 25245  𝑐ccxp 25246  θccht 25775  πcppi 25778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-xnn0 12007  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-o1 14895  df-lo1 14896  df-sum 15091  df-ef 15469  df-e 15470  df-sin 15471  df-cos 15472  df-pi 15474  df-dvds 15656  df-gcd 15894  df-prm 16068  df-pc 16229  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-cxp 25248  df-cht 25781  df-ppi 25784
This theorem is referenced by:  chtppilim  26158
  Copyright terms: Public domain W3C validator