Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfef2 Structured version   Visualization version   GIF version

Theorem dfef2 25540
 Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 as 𝑘 goes to +∞ is (exp‘𝐴). This is another common definition of e. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
dfef2.1 (𝜑𝐹𝑉)
dfef2.2 (𝜑𝐴 ∈ ℂ)
dfef2.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘))
Assertion
Ref Expression
dfef2 (𝜑𝐹 ⇝ (exp‘𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem dfef2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfef2.2 . . 3 (𝜑𝐴 ∈ ℂ)
2 ax-1cn 10587 . . . . . . . 8 1 ∈ ℂ
3 simpl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ)
4 nncn 11638 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
54adantl 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
6 nnne0 11663 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
76adantl 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ≠ 0)
83, 5, 7divcld 11408 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (𝐴 / 𝑥) ∈ ℂ)
9 addcl 10611 . . . . . . . 8 ((1 ∈ ℂ ∧ (𝐴 / 𝑥) ∈ ℂ) → (1 + (𝐴 / 𝑥)) ∈ ℂ)
102, 8, 9sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (1 + (𝐴 / 𝑥)) ∈ ℂ)
11 nnnn0 11896 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
1211adantl 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
13 cxpexp 25243 . . . . . . 7 (((1 + (𝐴 / 𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → ((1 + (𝐴 / 𝑥))↑𝑐𝑥) = ((1 + (𝐴 / 𝑥))↑𝑥))
1410, 12, 13syl2anc 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((1 + (𝐴 / 𝑥))↑𝑐𝑥) = ((1 + (𝐴 / 𝑥))↑𝑥))
1514mpteq2dva 5152 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) = (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)))
16 nnrp 12392 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
1716ssriv 3969 . . . . . . 7 ℕ ⊆ ℝ+
1817a1i 11 . . . . . 6 (𝐴 ∈ ℂ → ℕ ⊆ ℝ+)
19 eqid 2819 . . . . . . 7 (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
2019efrlim 25539 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) ⇝𝑟 (exp‘𝐴))
2118, 20rlimres2 14910 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) ⇝𝑟 (exp‘𝐴))
2215, 21eqbrtrrd 5081 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝𝑟 (exp‘𝐴))
23 nnuz 12273 . . . . 5 ℕ = (ℤ‘1)
24 1zzd 12005 . . . . 5 (𝐴 ∈ ℂ → 1 ∈ ℤ)
2510, 12expcld 13502 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((1 + (𝐴 / 𝑥))↑𝑥) ∈ ℂ)
2625fmpttd 6872 . . . . 5 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)):ℕ⟶ℂ)
2723, 24, 26rlimclim 14895 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴)))
2822, 27mpbid 234 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴))
291, 28syl 17 . 2 (𝜑 → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴))
30 nnex 11636 . . . . 5 ℕ ∈ V
3130mptex 6978 . . . 4 (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ∈ V
3231a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ∈ V)
33 dfef2.1 . . 3 (𝜑𝐹𝑉)
34 1zzd 12005 . . 3 (𝜑 → 1 ∈ ℤ)
35 oveq2 7156 . . . . . . . 8 (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘))
3635oveq2d 7164 . . . . . . 7 (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘)))
37 id 22 . . . . . . 7 (𝑥 = 𝑘𝑥 = 𝑘)
3836, 37oveq12d 7166 . . . . . 6 (𝑥 = 𝑘 → ((1 + (𝐴 / 𝑥))↑𝑥) = ((1 + (𝐴 / 𝑘))↑𝑘))
39 eqid 2819 . . . . . 6 (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) = (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))
40 ovex 7181 . . . . . 6 ((1 + (𝐴 / 𝑘))↑𝑘) ∈ V
4138, 39, 40fvmpt 6761 . . . . 5 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘))
4241adantl 484 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘))
43 dfef2.3 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘))
4442, 43eqtr4d 2857 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = (𝐹𝑘))
4523, 32, 33, 34, 44climeq 14916 . 2 (𝜑 → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴) ↔ 𝐹 ⇝ (exp‘𝐴)))
4629, 45mpbid 234 1 (𝜑𝐹 ⇝ (exp‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  Vcvv 3493   ⊆ wss 3934   class class class wbr 5057   ↦ cmpt 5137   ∘ ccom 5552  ‘cfv 6348  (class class class)co 7148  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532   − cmin 10862   / cdiv 11289  ℕcn 11630  ℕ0cn0 11889  ℝ+crp 12381  ↑cexp 13421  abscabs 14585   ⇝ cli 14833   ⇝𝑟 crli 14834  expce 15407  ballcbl 20524  ↑𝑐ccxp 25131 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-cxp 25133 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator