| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfef2 | Structured version Visualization version GIF version | ||
| Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 as 𝑘 goes to +∞ is (exp‘𝐴). This is another common definition of e. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| dfef2.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| dfef2.2 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| dfef2.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
| Ref | Expression |
|---|---|
| dfef2 | ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfef2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | ax-1cn 11133 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 3 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ) | |
| 4 | nncn 12201 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
| 5 | 4 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℂ) |
| 6 | nnne0 12227 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ≠ 0) |
| 8 | 3, 5, 7 | divcld 11965 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (𝐴 / 𝑥) ∈ ℂ) |
| 9 | addcl 11157 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (𝐴 / 𝑥) ∈ ℂ) → (1 + (𝐴 / 𝑥)) ∈ ℂ) | |
| 10 | 2, 8, 9 | sylancr 587 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (1 + (𝐴 / 𝑥)) ∈ ℂ) |
| 11 | nnnn0 12456 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0) |
| 13 | cxpexp 26584 | . . . . . . 7 ⊢ (((1 + (𝐴 / 𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → ((1 + (𝐴 / 𝑥))↑𝑐𝑥) = ((1 + (𝐴 / 𝑥))↑𝑥)) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((1 + (𝐴 / 𝑥))↑𝑐𝑥) = ((1 + (𝐴 / 𝑥))↑𝑥)) |
| 15 | 14 | mpteq2dva 5203 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) = (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))) |
| 16 | nnrp 12970 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+) | |
| 17 | 16 | ssriv 3953 | . . . . . . 7 ⊢ ℕ ⊆ ℝ+ |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ℕ ⊆ ℝ+) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) | |
| 20 | 19 | efrlim 26886 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) ⇝𝑟 (exp‘𝐴)) |
| 21 | 18, 20 | rlimres2 15534 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) ⇝𝑟 (exp‘𝐴)) |
| 22 | 15, 21 | eqbrtrrd 5134 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝𝑟 (exp‘𝐴)) |
| 23 | nnuz 12843 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 24 | 1zzd 12571 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℤ) | |
| 25 | 10, 12 | expcld 14118 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((1 + (𝐴 / 𝑥))↑𝑥) ∈ ℂ) |
| 26 | 25 | fmpttd 7090 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)):ℕ⟶ℂ) |
| 27 | 23, 24, 26 | rlimclim 15519 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴))) |
| 28 | 22, 27 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴)) |
| 29 | 1, 28 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴)) |
| 30 | nnex 12199 | . . . . 5 ⊢ ℕ ∈ V | |
| 31 | 30 | mptex 7200 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ∈ V |
| 32 | 31 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ∈ V) |
| 33 | dfef2.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 34 | 1zzd 12571 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 35 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
| 36 | 35 | oveq2d 7406 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
| 37 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝑥 = 𝑘) | |
| 38 | 36, 37 | oveq12d 7408 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (𝐴 / 𝑥))↑𝑥) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
| 39 | eqid 2730 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) = (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) | |
| 40 | ovex 7423 | . . . . . 6 ⊢ ((1 + (𝐴 / 𝑘))↑𝑘) ∈ V | |
| 41 | 38, 39, 40 | fvmpt 6971 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
| 42 | 41 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
| 43 | dfef2.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) | |
| 44 | 42, 43 | eqtr4d 2768 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = (𝐹‘𝑘)) |
| 45 | 23, 32, 33, 34, 44 | climeq 15540 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴) ↔ 𝐹 ⇝ (exp‘𝐴))) |
| 46 | 29, 45 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 ℝ+crp 12958 ↑cexp 14033 abscabs 15207 ⇝ cli 15457 ⇝𝑟 crli 15458 expce 16034 ballcbl 21258 ↑𝑐ccxp 26471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-tan 16044 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-cxp 26473 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |