Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfef2 | Structured version Visualization version GIF version |
Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 as 𝑘 goes to +∞ is (exp‘𝐴). This is another common definition of e. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
dfef2.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
dfef2.2 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
dfef2.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
Ref | Expression |
---|---|
dfef2 | ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfef2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | ax-1cn 10860 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
3 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ ℂ) | |
4 | nncn 11911 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
5 | 4 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℂ) |
6 | nnne0 11937 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ≠ 0) |
8 | 3, 5, 7 | divcld 11681 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (𝐴 / 𝑥) ∈ ℂ) |
9 | addcl 10884 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (𝐴 / 𝑥) ∈ ℂ) → (1 + (𝐴 / 𝑥)) ∈ ℂ) | |
10 | 2, 8, 9 | sylancr 586 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (1 + (𝐴 / 𝑥)) ∈ ℂ) |
11 | nnnn0 12170 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0) |
13 | cxpexp 25728 | . . . . . . 7 ⊢ (((1 + (𝐴 / 𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → ((1 + (𝐴 / 𝑥))↑𝑐𝑥) = ((1 + (𝐴 / 𝑥))↑𝑥)) | |
14 | 10, 12, 13 | syl2anc 583 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((1 + (𝐴 / 𝑥))↑𝑐𝑥) = ((1 + (𝐴 / 𝑥))↑𝑥)) |
15 | 14 | mpteq2dva 5170 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) = (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))) |
16 | nnrp 12670 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+) | |
17 | 16 | ssriv 3921 | . . . . . . 7 ⊢ ℕ ⊆ ℝ+ |
18 | 17 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ℕ ⊆ ℝ+) |
19 | eqid 2738 | . . . . . . 7 ⊢ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) | |
20 | 19 | efrlim 26024 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) ⇝𝑟 (exp‘𝐴)) |
21 | 18, 20 | rlimres2 15198 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑐𝑥)) ⇝𝑟 (exp‘𝐴)) |
22 | 15, 21 | eqbrtrrd 5094 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝𝑟 (exp‘𝐴)) |
23 | nnuz 12550 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
24 | 1zzd 12281 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℤ) | |
25 | 10, 12 | expcld 13792 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((1 + (𝐴 / 𝑥))↑𝑥) ∈ ℂ) |
26 | 25 | fmpttd 6971 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)):ℕ⟶ℂ) |
27 | 23, 24, 26 | rlimclim 15183 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴))) |
28 | 22, 27 | mpbid 231 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴)) |
29 | 1, 28 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴)) |
30 | nnex 11909 | . . . . 5 ⊢ ℕ ∈ V | |
31 | 30 | mptex 7081 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ∈ V |
32 | 31 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ∈ V) |
33 | dfef2.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
34 | 1zzd 12281 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
35 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
36 | 35 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
37 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝑥 = 𝑘) | |
38 | 36, 37 | oveq12d 7273 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (𝐴 / 𝑥))↑𝑥) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
39 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) = (𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) | |
40 | ovex 7288 | . . . . . 6 ⊢ ((1 + (𝐴 / 𝑘))↑𝑘) ∈ V | |
41 | 38, 39, 40 | fvmpt 6857 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
42 | 41 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) |
43 | dfef2.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) | |
44 | 42, 43 | eqtr4d 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥))‘𝑘) = (𝐹‘𝑘)) |
45 | 23, 32, 33, 34, 44 | climeq 15204 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ ↦ ((1 + (𝐴 / 𝑥))↑𝑥)) ⇝ (exp‘𝐴) ↔ 𝐹 ⇝ (exp‘𝐴))) |
46 | 29, 45 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℝ+crp 12659 ↑cexp 13710 abscabs 14873 ⇝ cli 15121 ⇝𝑟 crli 15122 expce 15699 ballcbl 20497 ↑𝑐ccxp 25616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |