MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2lim Structured version   Visualization version   GIF version

Theorem cxp2lim 26903
Description: Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxp2lim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxp2lim
StepHypRef Expression
1 1re 11134 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 13366 . . . . . . . 8 (1 ∈ ℝ → (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛)))
31, 2ax-mp 5 . . . . . . 7 (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛))
43simplbi 497 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ)
5 0red 11137 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 ∈ ℝ)
6 1red 11135 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ∈ ℝ)
7 0lt1 11660 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 < 1)
93simprbi 496 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ≤ 𝑛)
105, 6, 4, 8, 9ltletrd 11294 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 0 < 𝑛)
114, 10elrpd 12952 . . . . 5 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ+)
1211ssriv 3941 . . . 4 (1[,)+∞) ⊆ ℝ+
13 resmpt 5992 . . . 4 ((1[,)+∞) ⊆ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))))
1412, 13ax-mp 5 . . 3 ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
15 0red 11137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ∈ ℝ)
1612a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1[,)+∞) ⊆ ℝ+)
17 rpre 12920 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1817adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
19 rpge0 12925 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
2019adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ≤ 𝑛)
21 simpl2 1193 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 0red 11137 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ∈ ℝ)
23 1red 11135 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 ∈ ℝ)
247a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 1)
25 simpl3 1194 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 < 𝐵)
2622, 23, 21, 24, 25lttrd 11295 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 𝐵)
2721, 26elrpd 12952 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ+)
2827, 18rpcxpcld 26658 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℝ+)
29 simp1 1136 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
30 ifcl 4524 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
3129, 1, 30sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
32 1red 11135 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 1)
34 max1 13105 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
351, 29, 34sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
3615, 32, 31, 33, 35ltletrd 11294 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < if(1 ≤ 𝐴, 𝐴, 1))
3731, 36elrpd 12952 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
3837rprecred 12966 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
4028, 39rpcxpcld 26658 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
4131recnd 11162 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4241adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4318, 20, 40, 42divcxpd 26647 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))))
4437adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
4544rpne0d 12960 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ≠ 0)
4642, 45recid2d 11914 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1)) = 1)
4746oveq2d 7369 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐𝑛)↑𝑐1))
4828, 39, 42cxpmuld 26662 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)))
4928rpcnd 12957 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℂ)
5049cxp1d 26631 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐1) = (𝐵𝑐𝑛))
5147, 48, 503eqtr3d 2772 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = (𝐵𝑐𝑛))
5251oveq2d 7369 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5343, 52eqtrd 2764 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5453mpteq2dva 5188 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))))
55 ovexd 7388 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) ∈ V)
5618recnd 11162 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
5738recnd 11162 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5857adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5956, 58mulcomd 11155 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛))
6059oveq2d 7369 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)))
6127, 18, 58cxpmuld 26662 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
6227, 39, 56cxpmuld 26662 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6360, 61, 623eqtr3d 2772 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6463oveq2d 7369 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛)))
6564mpteq2dva 5188 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) = (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))))
66 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
67 simp3 1138 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6815, 32, 66, 33, 67lttrd 11295 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
6966, 68elrpd 12952 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
7069, 38rpcxpcld 26658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
7170rpred 12955 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ)
72571cxpd 26632 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = 1)
73 0le1 11661 . . . . . . . . . . . . 13 0 ≤ 1
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 1)
7569rpge0d 12959 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7637rpreccld 12965 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
7732, 74, 66, 75, 76cxplt2d 26651 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))))
7867, 77mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
7972, 78eqbrtrrd 5119 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
80 cxp2limlem 26902 . . . . . . . . 9 (((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ ∧ 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8171, 79, 80syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8265, 81eqbrtrd 5117 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) ⇝𝑟 0)
8355, 82, 37rlimcxp 26900 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) ⇝𝑟 0)
8454, 83eqbrtrrd 5119 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
8516, 84rlimres2 15486 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
86 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
8731adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
8886, 87rpcxpcld 26658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
8988, 28rpdivcld 12972 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ+)
9089rpred 12955 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
9111, 90sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
92 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
9386, 92rpcxpcld 26658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
9493, 28rpdivcld 12972 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9511, 94sylan2 593 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9695rpred 12955 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ)
9711, 93sylan2 593 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ+)
9897rpred 12955 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ)
9911, 88sylan2 593 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
10099rpred 12955 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
10111, 28sylan2 593 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝐵𝑐𝑛) ∈ ℝ+)
1024adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝑛 ∈ ℝ)
1039adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 1 ≤ 𝑛)
104 simpl1 1192 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ∈ ℝ)
10531adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
106 max2 13107 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
1071, 104, 106sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
108102, 103, 104, 105, 107cxplead 26646 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ≤ (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)))
10998, 100, 101, 108lediv1dd 13013 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
110109adantrr 717 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
11195rpge0d 12959 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
112111adantrr 717 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
11315, 15, 85, 91, 96, 110, 112rlimsqz2 15576 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
11414, 113eqbrtrid 5130 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0)
11594rpcnd 12957 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℂ)
116115fmpttd 7053 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))):ℝ+⟶ℂ)
117 rpssre 12919 . . . 4 + ⊆ ℝ
118117a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ℝ+ ⊆ ℝ)
119116, 118, 32rlimresb 15490 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0 ↔ ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0))
120114, 119mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  cres 5625  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033  +∞cpnf 11165   < clt 11168  cle 11169   / cdiv 11795  +crp 12911  [,)cico 13268  𝑟 crli 15410  𝑐ccxp 26480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator