Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2lim Structured version   Visualization version   GIF version

Theorem cxp2lim 25661
 Description: Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxp2lim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxp2lim
StepHypRef Expression
1 1re 10679 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 12877 . . . . . . . 8 (1 ∈ ℝ → (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛)))
31, 2ax-mp 5 . . . . . . 7 (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛))
43simplbi 501 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ)
5 0red 10682 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 ∈ ℝ)
6 1red 10680 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ∈ ℝ)
7 0lt1 11200 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 < 1)
93simprbi 500 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ≤ 𝑛)
105, 6, 4, 8, 9ltletrd 10838 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 0 < 𝑛)
114, 10elrpd 12469 . . . . 5 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ+)
1211ssriv 3896 . . . 4 (1[,)+∞) ⊆ ℝ+
13 resmpt 5877 . . . 4 ((1[,)+∞) ⊆ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))))
1412, 13ax-mp 5 . . 3 ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
15 0red 10682 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ∈ ℝ)
1612a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1[,)+∞) ⊆ ℝ+)
17 rpre 12438 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1817adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
19 rpge0 12443 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
2019adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ≤ 𝑛)
21 simpl2 1189 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 0red 10682 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ∈ ℝ)
23 1red 10680 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 ∈ ℝ)
247a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 1)
25 simpl3 1190 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 < 𝐵)
2622, 23, 21, 24, 25lttrd 10839 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 𝐵)
2721, 26elrpd 12469 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ+)
2827, 18rpcxpcld 25422 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℝ+)
29 simp1 1133 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
30 ifcl 4465 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
3129, 1, 30sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
32 1red 10680 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 1)
34 max1 12619 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
351, 29, 34sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
3615, 32, 31, 33, 35ltletrd 10838 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < if(1 ≤ 𝐴, 𝐴, 1))
3731, 36elrpd 12469 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
3837rprecred 12483 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
3938adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
4028, 39rpcxpcld 25422 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
4131recnd 10707 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4241adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4318, 20, 40, 42divcxpd 25412 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))))
4437adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
4544rpne0d 12477 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ≠ 0)
4642, 45recid2d 11450 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1)) = 1)
4746oveq2d 7166 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐𝑛)↑𝑐1))
4828, 39, 42cxpmuld 25426 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)))
4928rpcnd 12474 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℂ)
5049cxp1d 25396 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐1) = (𝐵𝑐𝑛))
5147, 48, 503eqtr3d 2801 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = (𝐵𝑐𝑛))
5251oveq2d 7166 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5343, 52eqtrd 2793 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5453mpteq2dva 5127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))))
55 ovexd 7185 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) ∈ V)
5618recnd 10707 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
5738recnd 10707 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5857adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5956, 58mulcomd 10700 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛))
6059oveq2d 7166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)))
6127, 18, 58cxpmuld 25426 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
6227, 39, 56cxpmuld 25426 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6360, 61, 623eqtr3d 2801 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6463oveq2d 7166 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛)))
6564mpteq2dva 5127 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) = (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))))
66 simp2 1134 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
67 simp3 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6815, 32, 66, 33, 67lttrd 10839 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
6966, 68elrpd 12469 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
7069, 38rpcxpcld 25422 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
7170rpred 12472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ)
72571cxpd 25397 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = 1)
73 0le1 11201 . . . . . . . . . . . . 13 0 ≤ 1
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 1)
7569rpge0d 12476 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7637rpreccld 12482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
7732, 74, 66, 75, 76cxplt2d 25416 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))))
7867, 77mpbid 235 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
7972, 78eqbrtrrd 5056 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
80 cxp2limlem 25660 . . . . . . . . 9 (((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ ∧ 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8171, 79, 80syl2anc 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8265, 81eqbrtrd 5054 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) ⇝𝑟 0)
8355, 82, 37rlimcxp 25658 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) ⇝𝑟 0)
8454, 83eqbrtrrd 5056 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
8516, 84rlimres2 14966 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
86 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
8731adantr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
8886, 87rpcxpcld 25422 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
8988, 28rpdivcld 12489 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ+)
9089rpred 12472 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
9111, 90sylan2 595 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
92 simpl1 1188 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
9386, 92rpcxpcld 25422 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
9493, 28rpdivcld 12489 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9511, 94sylan2 595 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9695rpred 12472 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ)
9711, 93sylan2 595 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ+)
9897rpred 12472 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ)
9911, 88sylan2 595 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
10099rpred 12472 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
10111, 28sylan2 595 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝐵𝑐𝑛) ∈ ℝ+)
1024adantl 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝑛 ∈ ℝ)
1039adantl 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 1 ≤ 𝑛)
104 simpl1 1188 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ∈ ℝ)
10531adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
106 max2 12621 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
1071, 104, 106sylancr 590 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
108102, 103, 104, 105, 107cxplead 25411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ≤ (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)))
10998, 100, 101, 108lediv1dd 12530 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
110109adantrr 716 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
11195rpge0d 12476 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
112111adantrr 716 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
11315, 15, 85, 91, 96, 110, 112rlimsqz2 15055 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
11414, 113eqbrtrid 5067 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0)
11594rpcnd 12474 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℂ)
116115fmpttd 6870 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))):ℝ+⟶ℂ)
117 rpssre 12437 . . . 4 + ⊆ ℝ
118117a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ℝ+ ⊆ ℝ)
119116, 118, 32rlimresb 14970 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0 ↔ ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0))
120114, 119mpbird 260 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ⊆ wss 3858  ifcif 4420   class class class wbr 5032   ↦ cmpt 5112   ↾ cres 5526  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   · cmul 10580  +∞cpnf 10710   < clt 10713   ≤ cle 10714   / cdiv 11335  ℝ+crp 12430  [,)cico 12781   ⇝𝑟 crli 14890  ↑𝑐ccxp 25246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-cxp 25248 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator