Proof of Theorem cxp2lim
Step | Hyp | Ref
| Expression |
1 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
2 | | elicopnf 13106 |
. . . . . . . 8
⊢ (1 ∈
ℝ → (𝑛 ∈
(1[,)+∞) ↔ (𝑛
∈ ℝ ∧ 1 ≤ 𝑛))) |
3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢ (𝑛 ∈ (1[,)+∞) ↔
(𝑛 ∈ ℝ ∧ 1
≤ 𝑛)) |
4 | 3 | simplbi 497 |
. . . . . 6
⊢ (𝑛 ∈ (1[,)+∞) →
𝑛 ∈
ℝ) |
5 | | 0red 10909 |
. . . . . . 7
⊢ (𝑛 ∈ (1[,)+∞) → 0
∈ ℝ) |
6 | | 1red 10907 |
. . . . . . 7
⊢ (𝑛 ∈ (1[,)+∞) → 1
∈ ℝ) |
7 | | 0lt1 11427 |
. . . . . . . 8
⊢ 0 <
1 |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝑛 ∈ (1[,)+∞) → 0
< 1) |
9 | 3 | simprbi 496 |
. . . . . . 7
⊢ (𝑛 ∈ (1[,)+∞) → 1
≤ 𝑛) |
10 | 5, 6, 4, 8, 9 | ltletrd 11065 |
. . . . . 6
⊢ (𝑛 ∈ (1[,)+∞) → 0
< 𝑛) |
11 | 4, 10 | elrpd 12698 |
. . . . 5
⊢ (𝑛 ∈ (1[,)+∞) →
𝑛 ∈
ℝ+) |
12 | 11 | ssriv 3921 |
. . . 4
⊢
(1[,)+∞) ⊆ ℝ+ |
13 | | resmpt 5934 |
. . . 4
⊢
((1[,)+∞) ⊆ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦
((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)))) |
14 | 12, 13 | ax-mp 5 |
. . 3
⊢ ((𝑛 ∈ ℝ+
↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦
((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) |
15 | | 0red 10909 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 0 ∈
ℝ) |
16 | 12 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (1[,)+∞)
⊆ ℝ+) |
17 | | rpre 12667 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ) |
18 | 17 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈
ℝ) |
19 | | rpge0 12672 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ+
→ 0 ≤ 𝑛) |
20 | 19 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ≤
𝑛) |
21 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈
ℝ) |
22 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ∈
ℝ) |
23 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 1 ∈
ℝ) |
24 | 7 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 0 <
1) |
25 | | simpl3 1191 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 1 <
𝐵) |
26 | 22, 23, 21, 24, 25 | lttrd 11066 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 0 <
𝐵) |
27 | 21, 26 | elrpd 12698 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈
ℝ+) |
28 | 27, 18 | rpcxpcld 25792 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵↑𝑐𝑛) ∈
ℝ+) |
29 | | simp1 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 𝐴 ∈ ℝ) |
30 | | ifcl 4501 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ) |
31 | 29, 1, 30 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ) |
32 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 1 ∈
ℝ) |
33 | 7 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 0 <
1) |
34 | | max1 12848 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ 𝐴
∈ ℝ) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1)) |
35 | 1, 29, 34 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 1 ≤ if(1 ≤
𝐴, 𝐴, 1)) |
36 | 15, 32, 31, 33, 35 | ltletrd 11065 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 0 < if(1 ≤
𝐴, 𝐴, 1)) |
37 | 31, 36 | elrpd 12698 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈
ℝ+) |
38 | 37 | rprecred 12712 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (1 / if(1 ≤
𝐴, 𝐴, 1)) ∈ ℝ) |
39 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1
≤ 𝐴, 𝐴, 1)) ∈ ℝ) |
40 | 28, 39 | rpcxpcld 25792 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1))) ∈
ℝ+) |
41 | 31 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ) |
42 | 41 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤
𝐴, 𝐴, 1) ∈ ℂ) |
43 | 18, 20, 40, 42 | divcxpd 25782 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1))))↑𝑐if(1 ≤
𝐴, 𝐴, 1)) = ((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐if(1 ≤
𝐴, 𝐴, 1)))) |
44 | 37 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤
𝐴, 𝐴, 1) ∈
ℝ+) |
45 | 44 | rpne0d 12706 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤
𝐴, 𝐴, 1) ≠ 0) |
46 | 42, 45 | recid2d 11677 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((1 /
if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1)) = 1) |
47 | 46 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵↑𝑐𝑛)↑𝑐((1 /
if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵↑𝑐𝑛)↑𝑐1)) |
48 | 28, 39, 42 | cxpmuld 25796 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵↑𝑐𝑛)↑𝑐((1 /
if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = (((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐if(1 ≤
𝐴, 𝐴, 1))) |
49 | 28 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵↑𝑐𝑛) ∈
ℂ) |
50 | 49 | cxp1d 25766 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵↑𝑐𝑛)↑𝑐1) =
(𝐵↑𝑐𝑛)) |
51 | 47, 48, 50 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴,
1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = (𝐵↑𝑐𝑛)) |
52 | 51 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) / (((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐if(1 ≤
𝐴, 𝐴, 1))) = ((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛))) |
53 | 43, 52 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1))))↑𝑐if(1 ≤
𝐴, 𝐴, 1)) = ((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛))) |
54 | 53 | mpteq2dva 5170 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ ((𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴,
1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = (𝑛 ∈ ℝ+ ↦ ((𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛)))) |
55 | | ovexd 7290 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))) ∈ V) |
56 | 18 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈
ℂ) |
57 | 38 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (1 / if(1 ≤
𝐴, 𝐴, 1)) ∈ ℂ) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1
≤ 𝐴, 𝐴, 1)) ∈ ℂ) |
59 | 56, 58 | mulcomd 10927 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)) |
60 | 59 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵↑𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝐵↑𝑐((1 / if(1 ≤
𝐴, 𝐴, 1)) · 𝑛))) |
61 | 27, 18, 58 | cxpmuld 25796 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵↑𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = ((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))) |
62 | 27, 39, 56 | cxpmuld 25796 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵↑𝑐((1 /
if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)) = ((𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐𝑛)) |
63 | 60, 61, 62 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐𝑛)) |
64 | 63 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))) = (𝑛 / ((𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐𝑛))) |
65 | 64 | mpteq2dva 5170 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ (𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1))))) = (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐𝑛)))) |
66 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 𝐵 ∈ ℝ) |
67 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 1 < 𝐵) |
68 | 15, 32, 66, 33, 67 | lttrd 11066 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 0 < 𝐵) |
69 | 66, 68 | elrpd 12698 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 𝐵 ∈
ℝ+) |
70 | 69, 38 | rpcxpcld 25792 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝐵↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1))) ∈
ℝ+) |
71 | 70 | rpred 12701 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝐵↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1))) ∈
ℝ) |
72 | 57 | 1cxpd 25767 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) →
(1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = 1) |
73 | | 0le1 11428 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
74 | 73 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 0 ≤
1) |
75 | 69 | rpge0d 12705 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 0 ≤ 𝐵) |
76 | 37 | rpreccld 12711 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (1 / if(1 ≤
𝐴, 𝐴, 1)) ∈
ℝ+) |
77 | 32, 74, 66, 75, 76 | cxplt2d 25786 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (1 < 𝐵 ↔
(1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1))))) |
78 | 67, 77 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) →
(1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))) |
79 | 72, 78 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → 1 < (𝐵↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1)))) |
80 | | cxp2limlem 26030 |
. . . . . . . . 9
⊢ (((𝐵↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ ∧ 1
< (𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵↑𝑐(1 / if(1 ≤
𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟
0) |
81 | 71, 79, 80 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ (𝑛 / ((𝐵↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴,
1)))↑𝑐𝑛))) ⇝𝑟
0) |
82 | 65, 81 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ (𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴, 1)))))
⇝𝑟 0) |
83 | 55, 82, 37 | rlimcxp 26028 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ ((𝑛 / ((𝐵↑𝑐𝑛)↑𝑐(1 /
if(1 ≤ 𝐴, 𝐴,
1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) ⇝𝑟
0) |
84 | 54, 83 | eqbrtrrd 5094 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ ((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛))) ⇝𝑟
0) |
85 | 16, 84 | rlimres2 15198 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ (1[,)+∞) ↦
((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛))) ⇝𝑟
0) |
86 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈
ℝ+) |
87 | 31 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤
𝐴, 𝐴, 1) ∈ ℝ) |
88 | 86, 87 | rpcxpcld 25792 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) ∈
ℝ+) |
89 | 88, 28 | rpdivcld 12718 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛)) ∈
ℝ+) |
90 | 89 | rpred 12701 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛)) ∈ ℝ) |
91 | 11, 90 | sylan2 592 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛)) ∈ ℝ) |
92 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈
ℝ) |
93 | 86, 92 | rpcxpcld 25792 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛↑𝑐𝐴) ∈
ℝ+) |
94 | 93, 28 | rpdivcld 12718 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)) ∈
ℝ+) |
95 | 11, 94 | sylan2 592 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)) ∈
ℝ+) |
96 | 95 | rpred 12701 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)) ∈ ℝ) |
97 | 11, 93 | sylan2 592 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛↑𝑐𝐴) ∈
ℝ+) |
98 | 97 | rpred 12701 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛↑𝑐𝐴) ∈
ℝ) |
99 | 11, 88 | sylan2 592 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) ∈
ℝ+) |
100 | 99 | rpred 12701 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛↑𝑐if(1
≤ 𝐴, 𝐴, 1)) ∈ ℝ) |
101 | 11, 28 | sylan2 592 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝐵↑𝑐𝑛) ∈
ℝ+) |
102 | 4 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝑛 ∈
ℝ) |
103 | 9 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 1 ≤ 𝑛) |
104 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ∈
ℝ) |
105 | 31 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → if(1 ≤
𝐴, 𝐴, 1) ∈ ℝ) |
106 | | max2 12850 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝐴
∈ ℝ) → 𝐴
≤ if(1 ≤ 𝐴, 𝐴, 1)) |
107 | 1, 104, 106 | sylancr 586 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1)) |
108 | 102, 103,
104, 105, 107 | cxplead 25781 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛↑𝑐𝐴) ≤ (𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) |
109 | 98, 100, 101, 108 | lediv1dd 12759 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)) ≤ ((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛))) |
110 | 109 | adantrr 713 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0
≤ 𝑛)) → ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)) ≤ ((𝑛↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵↑𝑐𝑛))) |
111 | 95 | rpge0d 12705 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 0 ≤ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) |
112 | 111 | adantrr 713 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0
≤ 𝑛)) → 0 ≤
((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) |
113 | 15, 15, 85, 91, 96, 110, 112 | rlimsqz2 15290 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ (1[,)+∞) ↦
((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟
0) |
114 | 14, 113 | eqbrtrid 5105 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → ((𝑛 ∈ ℝ+
↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ↾ (1[,)+∞))
⇝𝑟 0) |
115 | 94 | rpcnd 12703 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛)) ∈ ℂ) |
116 | 115 | fmpttd 6971 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))):ℝ+⟶ℂ) |
117 | | rpssre 12666 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
118 | 117 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) →
ℝ+ ⊆ ℝ) |
119 | 116, 118,
32 | rlimresb 15202 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → ((𝑛 ∈ ℝ+
↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟 0 ↔
((𝑛 ∈
ℝ+ ↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ↾ (1[,)+∞))
⇝𝑟 0)) |
120 | 114, 119 | mpbird 256 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 <
𝐵) → (𝑛 ∈ ℝ+
↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟
0) |