MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2lim Structured version   Visualization version   GIF version

Theorem cxp2lim 26915
Description: Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxp2lim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxp2lim
StepHypRef Expression
1 1re 11119 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 13347 . . . . . . . 8 (1 ∈ ℝ → (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛)))
31, 2ax-mp 5 . . . . . . 7 (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛))
43simplbi 497 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ)
5 0red 11122 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 ∈ ℝ)
6 1red 11120 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ∈ ℝ)
7 0lt1 11646 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 < 1)
93simprbi 496 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ≤ 𝑛)
105, 6, 4, 8, 9ltletrd 11280 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 0 < 𝑛)
114, 10elrpd 12933 . . . . 5 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ+)
1211ssriv 3934 . . . 4 (1[,)+∞) ⊆ ℝ+
13 resmpt 5990 . . . 4 ((1[,)+∞) ⊆ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))))
1412, 13ax-mp 5 . . 3 ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
15 0red 11122 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ∈ ℝ)
1612a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1[,)+∞) ⊆ ℝ+)
17 rpre 12901 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1817adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
19 rpge0 12906 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
2019adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ≤ 𝑛)
21 simpl2 1193 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 0red 11122 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ∈ ℝ)
23 1red 11120 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 ∈ ℝ)
247a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 1)
25 simpl3 1194 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 < 𝐵)
2622, 23, 21, 24, 25lttrd 11281 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 𝐵)
2721, 26elrpd 12933 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ+)
2827, 18rpcxpcld 26670 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℝ+)
29 simp1 1136 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
30 ifcl 4520 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
3129, 1, 30sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
32 1red 11120 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 1)
34 max1 13086 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
351, 29, 34sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
3615, 32, 31, 33, 35ltletrd 11280 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < if(1 ≤ 𝐴, 𝐴, 1))
3731, 36elrpd 12933 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
3837rprecred 12947 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
4028, 39rpcxpcld 26670 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
4131recnd 11147 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4241adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4318, 20, 40, 42divcxpd 26659 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))))
4437adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
4544rpne0d 12941 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ≠ 0)
4642, 45recid2d 11900 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1)) = 1)
4746oveq2d 7368 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐𝑛)↑𝑐1))
4828, 39, 42cxpmuld 26674 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)))
4928rpcnd 12938 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℂ)
5049cxp1d 26643 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐1) = (𝐵𝑐𝑛))
5147, 48, 503eqtr3d 2776 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = (𝐵𝑐𝑛))
5251oveq2d 7368 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5343, 52eqtrd 2768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5453mpteq2dva 5186 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))))
55 ovexd 7387 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) ∈ V)
5618recnd 11147 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
5738recnd 11147 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5857adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5956, 58mulcomd 11140 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛))
6059oveq2d 7368 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)))
6127, 18, 58cxpmuld 26674 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
6227, 39, 56cxpmuld 26674 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6360, 61, 623eqtr3d 2776 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6463oveq2d 7368 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛)))
6564mpteq2dva 5186 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) = (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))))
66 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
67 simp3 1138 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6815, 32, 66, 33, 67lttrd 11281 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
6966, 68elrpd 12933 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
7069, 38rpcxpcld 26670 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
7170rpred 12936 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ)
72571cxpd 26644 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = 1)
73 0le1 11647 . . . . . . . . . . . . 13 0 ≤ 1
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 1)
7569rpge0d 12940 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7637rpreccld 12946 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
7732, 74, 66, 75, 76cxplt2d 26663 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))))
7867, 77mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
7972, 78eqbrtrrd 5117 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
80 cxp2limlem 26914 . . . . . . . . 9 (((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ ∧ 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8171, 79, 80syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8265, 81eqbrtrd 5115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) ⇝𝑟 0)
8355, 82, 37rlimcxp 26912 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) ⇝𝑟 0)
8454, 83eqbrtrrd 5117 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
8516, 84rlimres2 15470 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
86 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
8731adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
8886, 87rpcxpcld 26670 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
8988, 28rpdivcld 12953 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ+)
9089rpred 12936 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
9111, 90sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
92 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
9386, 92rpcxpcld 26670 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
9493, 28rpdivcld 12953 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9511, 94sylan2 593 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9695rpred 12936 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ)
9711, 93sylan2 593 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ+)
9897rpred 12936 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ)
9911, 88sylan2 593 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
10099rpred 12936 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
10111, 28sylan2 593 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝐵𝑐𝑛) ∈ ℝ+)
1024adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝑛 ∈ ℝ)
1039adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 1 ≤ 𝑛)
104 simpl1 1192 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ∈ ℝ)
10531adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
106 max2 13088 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
1071, 104, 106sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
108102, 103, 104, 105, 107cxplead 26658 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ≤ (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)))
10998, 100, 101, 108lediv1dd 12994 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
110109adantrr 717 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
11195rpge0d 12940 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
112111adantrr 717 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
11315, 15, 85, 91, 96, 110, 112rlimsqz2 15560 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
11414, 113eqbrtrid 5128 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0)
11594rpcnd 12938 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℂ)
116115fmpttd 7054 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))):ℝ+⟶ℂ)
117 rpssre 12900 . . . 4 + ⊆ ℝ
118117a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ℝ+ ⊆ ℝ)
119116, 118, 32rlimresb 15474 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0 ↔ ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0))
120114, 119mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  ifcif 4474   class class class wbr 5093  cmpt 5174  cres 5621  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   · cmul 11018  +∞cpnf 11150   < clt 11153  cle 11154   / cdiv 11781  +crp 12892  [,)cico 13249  𝑟 crli 15394  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator