MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbren Structured version   Visualization version   GIF version

Theorem csbren 24003
Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
csbren (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem csbren
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2cn 11700 . . . . 5 2 ∈ ℂ
2 csbrn.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
3 csbrn.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
4 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
53, 4remulcld 10660 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
62, 5fsumrecl 15083 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
76recnd 10658 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
8 sqmul 13481 . . . . 5 ((2 ∈ ℂ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
91, 7, 8sylancr 590 . . . 4 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
10 sq2 13556 . . . . 5 (2↑2) = 4
1110oveq1i 7145 . . . 4 ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
129, 11eqtrdi 2849 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
133resqcld 13607 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
142, 13fsumrecl 15083 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
15 2re 11699 . . . . . 6 2 ∈ ℝ
16 remulcl 10611 . . . . . 6 ((2 ∈ ℝ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
1715, 6, 16sylancr 590 . . . . 5 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
184resqcld 13607 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
192, 18fsumrecl 15083 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
202adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ Fin)
2113adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℝ)
22 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
2322resqcld 13607 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝑥↑2) ∈ ℝ)
2421, 23remulcld 10660 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℝ)
25 remulcl 10611 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2615, 5, 25sylancr 590 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2726adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2827, 22remulcld 10660 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℝ)
2924, 28readdcld 10659 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℝ)
3018adantlr 714 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℝ)
3129, 30readdcld 10659 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) ∈ ℝ)
323adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3332, 22remulcld 10660 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℝ)
344adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
3533, 34readdcld 10659 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) + 𝐶) ∈ ℝ)
3635sqge0d 13608 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ (((𝐵 · 𝑥) + 𝐶)↑2))
3733recnd 10658 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℂ)
3834recnd 10658 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
39 binom2 13575 . . . . . . . . . 10 (((𝐵 · 𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4037, 38, 39syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4132recnd 10658 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
4222recnd 10658 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
4341, 42sqmuld 13518 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥)↑2) = ((𝐵↑2) · (𝑥↑2)))
4441, 42, 38mul32d 10839 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) · 𝐶) = ((𝐵 · 𝐶) · 𝑥))
4544oveq2d 7151 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = (2 · ((𝐵 · 𝐶) · 𝑥)))
46 2cnd 11703 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 2 ∈ ℂ)
475adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
4847recnd 10658 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
4946, 48, 42mulassd 10653 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) = (2 · ((𝐵 · 𝐶) · 𝑥)))
5045, 49eqtr4d 2836 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = ((2 · (𝐵 · 𝐶)) · 𝑥))
5143, 50oveq12d 7153 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) = (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)))
5251oveq1d 7150 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5340, 52eqtrd 2833 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5436, 53breqtrd 5056 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5520, 31, 54fsumge0 15142 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5624recnd 10658 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℂ)
5728recnd 10658 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℂ)
5856, 57addcld 10649 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℂ)
5930recnd 10658 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℂ)
6020, 58, 59fsumadd 15088 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
6120, 56, 57fsumadd 15088 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
62 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
6362recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
6463sqcld 13504 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
6521recnd 10658 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℂ)
6620, 64, 65fsummulc1 15132 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) = Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)))
67 2cnd 11703 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 2 ∈ ℂ)
6820, 67, 48fsummulc2 15131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
6968oveq1d 7150 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥))
7026recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7170adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7220, 63, 71fsummulc1 15132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7369, 72eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7466, 73oveq12d 7153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
7561, 74eqtr4d 2836 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)))
7675oveq1d 7150 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7760, 76eqtrd 2833 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7855, 77breqtrd 5056 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7914, 17, 19, 78discr 13597 . . . 4 (𝜑 → (((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0)
8017resqcld 13607 . . . . 5 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ∈ ℝ)
81 4re 11709 . . . . . 6 4 ∈ ℝ
8214, 19remulcld 10660 . . . . . 6 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
83 remulcl 10611 . . . . . 6 ((4 ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ) → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8481, 82, 83sylancr 590 . . . . 5 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8580, 84suble0d 11220 . . . 4 (𝜑 → ((((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0 ↔ ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8679, 85mpbid 235 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8712, 86eqbrtrrd 5054 . 2 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
886resqcld 13607 . . 3 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ)
8981a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
90 4pos 11732 . . . 4 0 < 4
9190a1i 11 . . 3 (𝜑 → 0 < 4)
92 lemul2 11482 . . 3 (((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9388, 82, 89, 91, 92syl112anc 1371 . 2 (𝜑 → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9487, 93mpbird 260 1 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  2c2 11680  4c4 11682  cexp 13425  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  trirn  24004
  Copyright terms: Public domain W3C validator