MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbren Structured version   Visualization version   GIF version

Theorem csbren 25351
Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
csbren (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem csbren
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2cn 12315 . . . . 5 2 ∈ ℂ
2 csbrn.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
3 csbrn.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
4 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
53, 4remulcld 11265 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
62, 5fsumrecl 15750 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
76recnd 11263 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
8 sqmul 14137 . . . . 5 ((2 ∈ ℂ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
91, 7, 8sylancr 587 . . . 4 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
10 sq2 14215 . . . . 5 (2↑2) = 4
1110oveq1i 7415 . . . 4 ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
129, 11eqtrdi 2786 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
133resqcld 14143 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
142, 13fsumrecl 15750 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
15 2re 12314 . . . . . 6 2 ∈ ℝ
16 remulcl 11214 . . . . . 6 ((2 ∈ ℝ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
1715, 6, 16sylancr 587 . . . . 5 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
184resqcld 14143 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
192, 18fsumrecl 15750 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
202adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ Fin)
2113adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℝ)
22 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
2322resqcld 14143 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝑥↑2) ∈ ℝ)
2421, 23remulcld 11265 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℝ)
25 remulcl 11214 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2615, 5, 25sylancr 587 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2726adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2827, 22remulcld 11265 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℝ)
2924, 28readdcld 11264 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℝ)
3018adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℝ)
3129, 30readdcld 11264 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) ∈ ℝ)
323adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3332, 22remulcld 11265 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℝ)
344adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
3533, 34readdcld 11264 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) + 𝐶) ∈ ℝ)
3635sqge0d 14155 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ (((𝐵 · 𝑥) + 𝐶)↑2))
3733recnd 11263 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℂ)
3834recnd 11263 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
39 binom2 14235 . . . . . . . . . 10 (((𝐵 · 𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4132recnd 11263 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
4222recnd 11263 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
4341, 42sqmuld 14176 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥)↑2) = ((𝐵↑2) · (𝑥↑2)))
4441, 42, 38mul32d 11445 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) · 𝐶) = ((𝐵 · 𝐶) · 𝑥))
4544oveq2d 7421 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = (2 · ((𝐵 · 𝐶) · 𝑥)))
46 2cnd 12318 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 2 ∈ ℂ)
475adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
4847recnd 11263 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
4946, 48, 42mulassd 11258 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) = (2 · ((𝐵 · 𝐶) · 𝑥)))
5045, 49eqtr4d 2773 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = ((2 · (𝐵 · 𝐶)) · 𝑥))
5143, 50oveq12d 7423 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) = (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)))
5251oveq1d 7420 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5340, 52eqtrd 2770 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5436, 53breqtrd 5145 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5520, 31, 54fsumge0 15811 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5624recnd 11263 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℂ)
5728recnd 11263 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℂ)
5856, 57addcld 11254 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℂ)
5930recnd 11263 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℂ)
6020, 58, 59fsumadd 15756 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
6120, 56, 57fsumadd 15756 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
62 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
6362recnd 11263 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
6463sqcld 14162 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
6521recnd 11263 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℂ)
6620, 64, 65fsummulc1 15801 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) = Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)))
67 2cnd 12318 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 2 ∈ ℂ)
6820, 67, 48fsummulc2 15800 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
6968oveq1d 7420 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥))
7026recnd 11263 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7170adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7220, 63, 71fsummulc1 15801 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7369, 72eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7466, 73oveq12d 7423 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
7561, 74eqtr4d 2773 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)))
7675oveq1d 7420 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7760, 76eqtrd 2770 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7855, 77breqtrd 5145 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7914, 17, 19, 78discr 14258 . . . 4 (𝜑 → (((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0)
8017resqcld 14143 . . . . 5 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ∈ ℝ)
81 4re 12324 . . . . . 6 4 ∈ ℝ
8214, 19remulcld 11265 . . . . . 6 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
83 remulcl 11214 . . . . . 6 ((4 ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ) → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8481, 82, 83sylancr 587 . . . . 5 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8580, 84suble0d 11828 . . . 4 (𝜑 → ((((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0 ↔ ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8679, 85mpbid 232 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8712, 86eqbrtrrd 5143 . 2 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
886resqcld 14143 . . 3 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ)
8981a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
90 4pos 12347 . . . 4 0 < 4
9190a1i 11 . . 3 (𝜑 → 0 < 4)
92 lemul2 12094 . . 3 (((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9388, 82, 89, 91, 92syl112anc 1376 . 2 (𝜑 → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9487, 93mpbird 257 1 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  2c2 12295  4c4 12297  cexp 14079  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703
This theorem is referenced by:  trirn  25352
  Copyright terms: Public domain W3C validator