MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbren Structured version   Visualization version   GIF version

Theorem csbren 25319
Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
csbren (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem csbren
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2cn 12192 . . . . 5 2 ∈ ℂ
2 csbrn.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
3 csbrn.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
4 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
53, 4remulcld 11134 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
62, 5fsumrecl 15633 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
76recnd 11132 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
8 sqmul 14018 . . . . 5 ((2 ∈ ℂ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
91, 7, 8sylancr 587 . . . 4 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
10 sq2 14096 . . . . 5 (2↑2) = 4
1110oveq1i 7351 . . . 4 ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
129, 11eqtrdi 2781 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
133resqcld 14024 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
142, 13fsumrecl 15633 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
15 2re 12191 . . . . . 6 2 ∈ ℝ
16 remulcl 11083 . . . . . 6 ((2 ∈ ℝ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
1715, 6, 16sylancr 587 . . . . 5 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
184resqcld 14024 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
192, 18fsumrecl 15633 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
202adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ Fin)
2113adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℝ)
22 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
2322resqcld 14024 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝑥↑2) ∈ ℝ)
2421, 23remulcld 11134 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℝ)
25 remulcl 11083 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2615, 5, 25sylancr 587 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2726adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2827, 22remulcld 11134 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℝ)
2924, 28readdcld 11133 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℝ)
3018adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℝ)
3129, 30readdcld 11133 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) ∈ ℝ)
323adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3332, 22remulcld 11134 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℝ)
344adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
3533, 34readdcld 11133 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) + 𝐶) ∈ ℝ)
3635sqge0d 14036 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ (((𝐵 · 𝑥) + 𝐶)↑2))
3733recnd 11132 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℂ)
3834recnd 11132 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
39 binom2 14116 . . . . . . . . . 10 (((𝐵 · 𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4132recnd 11132 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
4222recnd 11132 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
4341, 42sqmuld 14057 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥)↑2) = ((𝐵↑2) · (𝑥↑2)))
4441, 42, 38mul32d 11315 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) · 𝐶) = ((𝐵 · 𝐶) · 𝑥))
4544oveq2d 7357 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = (2 · ((𝐵 · 𝐶) · 𝑥)))
46 2cnd 12195 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 2 ∈ ℂ)
475adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
4847recnd 11132 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
4946, 48, 42mulassd 11127 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) = (2 · ((𝐵 · 𝐶) · 𝑥)))
5045, 49eqtr4d 2768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = ((2 · (𝐵 · 𝐶)) · 𝑥))
5143, 50oveq12d 7359 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) = (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)))
5251oveq1d 7356 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5340, 52eqtrd 2765 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5436, 53breqtrd 5115 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5520, 31, 54fsumge0 15694 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5624recnd 11132 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℂ)
5728recnd 11132 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℂ)
5856, 57addcld 11123 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℂ)
5930recnd 11132 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℂ)
6020, 58, 59fsumadd 15639 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
6120, 56, 57fsumadd 15639 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
62 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
6362recnd 11132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
6463sqcld 14043 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
6521recnd 11132 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℂ)
6620, 64, 65fsummulc1 15684 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) = Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)))
67 2cnd 12195 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 2 ∈ ℂ)
6820, 67, 48fsummulc2 15683 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
6968oveq1d 7356 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥))
7026recnd 11132 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7170adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7220, 63, 71fsummulc1 15684 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7369, 72eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7466, 73oveq12d 7359 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
7561, 74eqtr4d 2768 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)))
7675oveq1d 7356 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7760, 76eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7855, 77breqtrd 5115 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7914, 17, 19, 78discr 14139 . . . 4 (𝜑 → (((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0)
8017resqcld 14024 . . . . 5 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ∈ ℝ)
81 4re 12201 . . . . . 6 4 ∈ ℝ
8214, 19remulcld 11134 . . . . . 6 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
83 remulcl 11083 . . . . . 6 ((4 ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ) → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8481, 82, 83sylancr 587 . . . . 5 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8580, 84suble0d 11700 . . . 4 (𝜑 → ((((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0 ↔ ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8679, 85mpbid 232 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8712, 86eqbrtrrd 5113 . 2 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
886resqcld 14024 . . 3 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ)
8981a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
90 4pos 12224 . . . 4 0 < 4
9190a1i 11 . . 3 (𝜑 → 0 < 4)
92 lemul2 11966 . . 3 (((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9388, 82, 89, 91, 92syl112anc 1376 . 2 (𝜑 → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9487, 93mpbird 257 1 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110   class class class wbr 5089  (class class class)co 7341  Fincfn 8864  cc 10996  cr 10997  0cc0 10998   + caddc 11001   · cmul 11003   < clt 11138  cle 11139  cmin 11336  2c2 12172  4c4 12174  cexp 13960  Σcsu 15585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-ico 13243  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586
This theorem is referenced by:  trirn  25320
  Copyright terms: Public domain W3C validator