MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbren Structured version   Visualization version   GIF version

Theorem csbren 23917
Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
csbren (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem csbren
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2cn 11704 . . . . 5 2 ∈ ℂ
2 csbrn.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
3 csbrn.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
4 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
53, 4remulcld 10663 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
62, 5fsumrecl 15083 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
76recnd 10661 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
8 sqmul 13478 . . . . 5 ((2 ∈ ℂ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
91, 7, 8sylancr 587 . . . 4 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
10 sq2 13553 . . . . 5 (2↑2) = 4
1110oveq1i 7161 . . . 4 ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
129, 11syl6eq 2876 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
133resqcld 13604 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
142, 13fsumrecl 15083 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
15 2re 11703 . . . . . 6 2 ∈ ℝ
16 remulcl 10614 . . . . . 6 ((2 ∈ ℝ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
1715, 6, 16sylancr 587 . . . . 5 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
184resqcld 13604 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
192, 18fsumrecl 15083 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
202adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ Fin)
2113adantlr 711 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℝ)
22 simplr 765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
2322resqcld 13604 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝑥↑2) ∈ ℝ)
2421, 23remulcld 10663 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℝ)
25 remulcl 10614 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2615, 5, 25sylancr 587 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2726adantlr 711 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2827, 22remulcld 10663 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℝ)
2924, 28readdcld 10662 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℝ)
3018adantlr 711 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℝ)
3129, 30readdcld 10662 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) ∈ ℝ)
323adantlr 711 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3332, 22remulcld 10663 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℝ)
344adantlr 711 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
3533, 34readdcld 10662 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) + 𝐶) ∈ ℝ)
3635sqge0d 13605 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ (((𝐵 · 𝑥) + 𝐶)↑2))
3733recnd 10661 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℂ)
3834recnd 10661 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
39 binom2 13572 . . . . . . . . . 10 (((𝐵 · 𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4132recnd 10661 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
4222recnd 10661 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
4341, 42sqmuld 13515 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥)↑2) = ((𝐵↑2) · (𝑥↑2)))
4441, 42, 38mul32d 10842 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) · 𝐶) = ((𝐵 · 𝐶) · 𝑥))
4544oveq2d 7167 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = (2 · ((𝐵 · 𝐶) · 𝑥)))
46 2cnd 11707 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 2 ∈ ℂ)
475adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
4847recnd 10661 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
4946, 48, 42mulassd 10656 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) = (2 · ((𝐵 · 𝐶) · 𝑥)))
5045, 49eqtr4d 2863 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = ((2 · (𝐵 · 𝐶)) · 𝑥))
5143, 50oveq12d 7169 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) = (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)))
5251oveq1d 7166 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5340, 52eqtrd 2860 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5436, 53breqtrd 5088 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5520, 31, 54fsumge0 15142 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5624recnd 10661 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℂ)
5728recnd 10661 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℂ)
5856, 57addcld 10652 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℂ)
5930recnd 10661 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℂ)
6020, 58, 59fsumadd 15088 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
6120, 56, 57fsumadd 15088 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
62 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
6362recnd 10661 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
6463sqcld 13501 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
6521recnd 10661 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℂ)
6620, 64, 65fsummulc1 15132 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) = Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)))
67 2cnd 11707 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 2 ∈ ℂ)
6820, 67, 48fsummulc2 15131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
6968oveq1d 7166 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥))
7026recnd 10661 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7170adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7220, 63, 71fsummulc1 15132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7369, 72eqtrd 2860 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7466, 73oveq12d 7169 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
7561, 74eqtr4d 2863 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)))
7675oveq1d 7166 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7760, 76eqtrd 2860 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7855, 77breqtrd 5088 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7914, 17, 19, 78discr 13594 . . . 4 (𝜑 → (((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0)
8017resqcld 13604 . . . . 5 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ∈ ℝ)
81 4re 11713 . . . . . 6 4 ∈ ℝ
8214, 19remulcld 10663 . . . . . 6 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
83 remulcl 10614 . . . . . 6 ((4 ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ) → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8481, 82, 83sylancr 587 . . . . 5 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8580, 84suble0d 11223 . . . 4 (𝜑 → ((((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0 ↔ ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8679, 85mpbid 233 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8712, 86eqbrtrrd 5086 . 2 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
886resqcld 13604 . . 3 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ)
8981a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
90 4pos 11736 . . . 4 0 < 4
9190a1i 11 . . 3 (𝜑 → 0 < 4)
92 lemul2 11485 . . 3 (((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9388, 82, 89, 91, 92syl112anc 1368 . 2 (𝜑 → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9487, 93mpbird 258 1 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107   class class class wbr 5062  (class class class)co 7151  Fincfn 8501  cc 10527  cr 10528  0cc0 10529   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862  2c2 11684  4c4 11686  cexp 13422  Σcsu 15035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-ico 12737  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036
This theorem is referenced by:  trirn  23918
  Copyright terms: Public domain W3C validator