MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbren Structured version   Visualization version   GIF version

Theorem csbren 24250
Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
csbren (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem csbren
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2cn 11870 . . . . 5 2 ∈ ℂ
2 csbrn.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
3 csbrn.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
4 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
53, 4remulcld 10828 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
62, 5fsumrecl 15263 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
76recnd 10826 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
8 sqmul 13656 . . . . 5 ((2 ∈ ℂ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
91, 7, 8sylancr 590 . . . 4 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
10 sq2 13731 . . . . 5 (2↑2) = 4
1110oveq1i 7201 . . . 4 ((2↑2) · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
129, 11eqtrdi 2787 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)))
133resqcld 13782 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
142, 13fsumrecl 15263 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
15 2re 11869 . . . . . 6 2 ∈ ℝ
16 remulcl 10779 . . . . . 6 ((2 ∈ ℝ ∧ Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
1715, 6, 16sylancr 590 . . . . 5 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
184resqcld 13782 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
192, 18fsumrecl 15263 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
202adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ Fin)
2113adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℝ)
22 simplr 769 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
2322resqcld 13782 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝑥↑2) ∈ ℝ)
2421, 23remulcld 10828 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℝ)
25 remulcl 10779 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2615, 5, 25sylancr 590 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2726adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
2827, 22remulcld 10828 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℝ)
2924, 28readdcld 10827 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℝ)
3018adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℝ)
3129, 30readdcld 10827 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) ∈ ℝ)
323adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
3332, 22remulcld 10828 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℝ)
344adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
3533, 34readdcld 10827 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) + 𝐶) ∈ ℝ)
3635sqge0d 13783 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ (((𝐵 · 𝑥) + 𝐶)↑2))
3733recnd 10826 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝑥) ∈ ℂ)
3834recnd 10826 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
39 binom2 13750 . . . . . . . . . 10 (((𝐵 · 𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4037, 38, 39syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)))
4132recnd 10826 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
4222recnd 10826 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
4341, 42sqmuld 13693 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥)↑2) = ((𝐵↑2) · (𝑥↑2)))
4441, 42, 38mul32d 11007 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵 · 𝑥) · 𝐶) = ((𝐵 · 𝐶) · 𝑥))
4544oveq2d 7207 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = (2 · ((𝐵 · 𝐶) · 𝑥)))
46 2cnd 11873 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 2 ∈ ℂ)
475adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
4847recnd 10826 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
4946, 48, 42mulassd 10821 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) = (2 · ((𝐵 · 𝐶) · 𝑥)))
5045, 49eqtr4d 2774 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · ((𝐵 · 𝑥) · 𝐶)) = ((2 · (𝐵 · 𝐶)) · 𝑥))
5143, 50oveq12d 7209 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) = (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)))
5251oveq1d 7206 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((((𝐵 · 𝑥)↑2) + (2 · ((𝐵 · 𝑥) · 𝐶))) + (𝐶↑2)) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5340, 52eqtrd 2771 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵 · 𝑥) + 𝐶)↑2) = ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5436, 53breqtrd 5065 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → 0 ≤ ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5520, 31, 54fsumge0 15322 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)))
5624recnd 10826 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((𝐵↑2) · (𝑥↑2)) ∈ ℂ)
5728recnd 10826 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → ((2 · (𝐵 · 𝐶)) · 𝑥) ∈ ℂ)
5856, 57addcld 10817 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) ∈ ℂ)
5930recnd 10826 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐶↑2) ∈ ℂ)
6020, 58, 59fsumadd 15268 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
6120, 56, 57fsumadd 15268 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
62 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
6362recnd 10826 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
6463sqcld 13679 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
6521recnd 10826 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵↑2) ∈ ℂ)
6620, 64, 65fsummulc1 15312 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) = Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)))
67 2cnd 11873 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 2 ∈ ℂ)
6820, 67, 48fsummulc2 15311 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
6968oveq1d 7206 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥))
7026recnd 10826 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7170adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
7220, 63, 71fsummulc1 15312 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7369, 72eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥) = Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥))
7466, 73oveq12d 7209 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) = (Σ𝑘𝐴 ((𝐵↑2) · (𝑥↑2)) + Σ𝑘𝐴 ((2 · (𝐵 · 𝐶)) · 𝑥)))
7561, 74eqtr4d 2774 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) = ((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)))
7675oveq1d 7206 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (Σ𝑘𝐴 (((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7760, 76eqtrd 2771 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → Σ𝑘𝐴 ((((𝐵↑2) · (𝑥↑2)) + ((2 · (𝐵 · 𝐶)) · 𝑥)) + (𝐶↑2)) = (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7855, 77breqtrd 5065 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((Σ𝑘𝐴 (𝐵↑2) · (𝑥↑2)) + ((2 · Σ𝑘𝐴 (𝐵 · 𝐶)) · 𝑥)) + Σ𝑘𝐴 (𝐶↑2)))
7914, 17, 19, 78discr 13772 . . . 4 (𝜑 → (((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0)
8017resqcld 13782 . . . . 5 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ∈ ℝ)
81 4re 11879 . . . . . 6 4 ∈ ℝ
8214, 19remulcld 10828 . . . . . 6 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
83 remulcl 10779 . . . . . 6 ((4 ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ) → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8481, 82, 83sylancr 590 . . . . 5 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
8580, 84suble0d 11388 . . . 4 (𝜑 → ((((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) − (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ≤ 0 ↔ ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8679, 85mpbid 235 . . 3 (𝜑 → ((2 · Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8712, 86eqbrtrrd 5063 . 2 (𝜑 → (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
886resqcld 13782 . . 3 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ)
8981a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
90 4pos 11902 . . . 4 0 < 4
9190a1i 11 . . 3 (𝜑 → 0 < 4)
92 lemul2 11650 . . 3 (((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ∈ ℝ ∧ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9388, 82, 89, 91, 92syl112anc 1376 . 2 (𝜑 → ((Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ↔ (4 · (Σ𝑘𝐴 (𝐵 · 𝐶)↑2)) ≤ (4 · (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
9487, 93mpbird 260 1 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112   class class class wbr 5039  (class class class)co 7191  Fincfn 8604  cc 10692  cr 10693  0cc0 10694   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  2c2 11850  4c4 11852  cexp 13600  Σcsu 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-ico 12906  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215
This theorem is referenced by:  trirn  24251
  Copyright terms: Public domain W3C validator