Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere0 Structured version   Visualization version   GIF version

Theorem 2sphere0 48761
Description: The sphere around the origin 0 (see rrx0 25317) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere0.0 0 = (𝐼 × {0})
2sphere0.c 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere0 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   0 ,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere0
StepHypRef Expression
1 2sphere.i . . . . 5 𝐼 = {1, 2}
2 prex 5373 . . . . 5 {1, 2} ∈ V
31, 2eqeltri 2825 . . . 4 𝐼 ∈ V
4 2sphere0.0 . . . . 5 0 = (𝐼 × {0})
5 2sphere.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
64, 5rrx0el 25318 . . . 4 (𝐼 ∈ V → 0𝑃)
73, 6ax-mp 5 . . 3 0𝑃
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
10 eqid 2730 . . . 4 {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}
111, 8, 5, 9, 102sphere 48760 . . 3 (( 0𝑃𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
127, 11mpan 690 . 2 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
134fveq1i 6818 . . . . . . . . . . . 12 ( 0 ‘1) = ((𝐼 × {0})‘1)
14 c0ex 11098 . . . . . . . . . . . . 13 0 ∈ V
15 1ex 11100 . . . . . . . . . . . . . . 15 1 ∈ V
1615prid1 4713 . . . . . . . . . . . . . 14 1 ∈ {1, 2}
1716, 1eleqtrri 2828 . . . . . . . . . . . . 13 1 ∈ 𝐼
18 fvconst2g 7131 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0)
1914, 17, 18mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘1) = 0
2013, 19eqtri 2753 . . . . . . . . . . 11 ( 0 ‘1) = 0
2120a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘1) = 0)
2221oveq2d 7357 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0))
231, 5rrx2pxel 48722 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2423recnd 11132 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
2524subid1d 11453 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − 0) = (𝑝‘1))
2622, 25eqtrd 2765 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1))
2726oveq1d 7356 . . . . . . 7 (𝑝𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2))
284fveq1i 6818 . . . . . . . . . . . 12 ( 0 ‘2) = ((𝐼 × {0})‘2)
29 2ex 12194 . . . . . . . . . . . . . . 15 2 ∈ V
3029prid2 4714 . . . . . . . . . . . . . 14 2 ∈ {1, 2}
3130, 1eleqtrri 2828 . . . . . . . . . . . . 13 2 ∈ 𝐼
32 fvconst2g 7131 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0)
3314, 31, 32mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘2) = 0
3428, 33eqtri 2753 . . . . . . . . . . 11 ( 0 ‘2) = 0
3534a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘2) = 0)
3635oveq2d 7357 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0))
371, 5rrx2pyel 48723 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3837recnd 11132 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
3938subid1d 11453 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − 0) = (𝑝‘2))
4036, 39eqtrd 2765 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2))
4140oveq1d 7356 . . . . . . 7 (𝑝𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2))
4227, 41oveq12d 7359 . . . . . 6 (𝑝𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2)))
4342eqeq1d 2732 . . . . 5 (𝑝𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4443adantl 481 . . . 4 ((𝑅 ∈ (0[,)+∞) ∧ 𝑝𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4544rabbidva 3399 . . 3 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
46 2sphere0.c . . 3 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
4745, 46eqtr4di 2783 . 2 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶)
4812, 47eqtrd 2765 1 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  {csn 4574  {cpr 4576   × cxp 5612  cfv 6477  (class class class)co 7341  m cmap 8745  cr 10997  0cc0 10998  1c1 10999   + caddc 11001  +∞cpnf 11135  cmin 11336  2c2 12172  [,)cico 13239  cexp 13960  ℝ^crrx 25303  Spherecsph 48739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-drng 20639  df-field 20640  df-staf 20747  df-srng 20748  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-xmet 21277  df-met 21278  df-cnfld 21285  df-refld 21535  df-dsmm 21662  df-frlm 21677  df-nm 24490  df-tng 24492  df-tcph 25089  df-rrx 25305  df-ehl 25306  df-sph 48741
This theorem is referenced by:  itsclc0  48782  itsclc0b  48783  itscnhlinecirc02p  48796
  Copyright terms: Public domain W3C validator