Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere0 Structured version   Visualization version   GIF version

Theorem 2sphere0 48600
Description: The sphere around the origin 0 (see rrx0 25445) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere0.0 0 = (𝐼 × {0})
2sphere0.c 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere0 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   0 ,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere0
StepHypRef Expression
1 2sphere.i . . . . 5 𝐼 = {1, 2}
2 prex 5443 . . . . 5 {1, 2} ∈ V
31, 2eqeltri 2835 . . . 4 𝐼 ∈ V
4 2sphere0.0 . . . . 5 0 = (𝐼 × {0})
5 2sphere.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
64, 5rrx0el 25446 . . . 4 (𝐼 ∈ V → 0𝑃)
73, 6ax-mp 5 . . 3 0𝑃
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
10 eqid 2735 . . . 4 {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}
111, 8, 5, 9, 102sphere 48599 . . 3 (( 0𝑃𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
127, 11mpan 690 . 2 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
134fveq1i 6908 . . . . . . . . . . . 12 ( 0 ‘1) = ((𝐼 × {0})‘1)
14 c0ex 11253 . . . . . . . . . . . . 13 0 ∈ V
15 1ex 11255 . . . . . . . . . . . . . . 15 1 ∈ V
1615prid1 4767 . . . . . . . . . . . . . 14 1 ∈ {1, 2}
1716, 1eleqtrri 2838 . . . . . . . . . . . . 13 1 ∈ 𝐼
18 fvconst2g 7222 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0)
1914, 17, 18mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘1) = 0
2013, 19eqtri 2763 . . . . . . . . . . 11 ( 0 ‘1) = 0
2120a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘1) = 0)
2221oveq2d 7447 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0))
231, 5rrx2pxel 48561 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2423recnd 11287 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
2524subid1d 11607 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − 0) = (𝑝‘1))
2622, 25eqtrd 2775 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1))
2726oveq1d 7446 . . . . . . 7 (𝑝𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2))
284fveq1i 6908 . . . . . . . . . . . 12 ( 0 ‘2) = ((𝐼 × {0})‘2)
29 2ex 12341 . . . . . . . . . . . . . . 15 2 ∈ V
3029prid2 4768 . . . . . . . . . . . . . 14 2 ∈ {1, 2}
3130, 1eleqtrri 2838 . . . . . . . . . . . . 13 2 ∈ 𝐼
32 fvconst2g 7222 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0)
3314, 31, 32mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘2) = 0
3428, 33eqtri 2763 . . . . . . . . . . 11 ( 0 ‘2) = 0
3534a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘2) = 0)
3635oveq2d 7447 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0))
371, 5rrx2pyel 48562 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3837recnd 11287 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
3938subid1d 11607 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − 0) = (𝑝‘2))
4036, 39eqtrd 2775 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2))
4140oveq1d 7446 . . . . . . 7 (𝑝𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2))
4227, 41oveq12d 7449 . . . . . 6 (𝑝𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2)))
4342eqeq1d 2737 . . . . 5 (𝑝𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4443adantl 481 . . . 4 ((𝑅 ∈ (0[,)+∞) ∧ 𝑝𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4544rabbidva 3440 . . 3 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
46 2sphere0.c . . 3 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
4745, 46eqtr4di 2793 . 2 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶)
4812, 47eqtrd 2775 1 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  {csn 4631  {cpr 4633   × cxp 5687  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  cmin 11490  2c2 12319  [,)cico 13386  cexp 14099  ℝ^crrx 25431  Spherecsph 48578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-xmet 21375  df-met 21376  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433  df-ehl 25434  df-sph 48580
This theorem is referenced by:  itsclc0  48621  itsclc0b  48622  itscnhlinecirc02p  48635
  Copyright terms: Public domain W3C validator