Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version |
Description: The sphere around the origin 0 (see rrx0 24666) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
Ref | Expression |
---|---|
2sphere.i | ⊢ 𝐼 = {1, 2} |
2sphere.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
2sphere.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
2sphere.s | ⊢ 𝑆 = (Sphere‘𝐸) |
2sphere0.0 | ⊢ 0 = (𝐼 × {0}) |
2sphere0.c | ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} |
Ref | Expression |
---|---|
2sphere0 | ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sphere.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
2 | prex 5381 | . . . . 5 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2834 | . . . 4 ⊢ 𝐼 ∈ V |
4 | 2sphere0.0 | . . . . 5 ⊢ 0 = (𝐼 × {0}) | |
5 | 2sphere.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
6 | 4, 5 | rrx0el 24667 | . . . 4 ⊢ (𝐼 ∈ V → 0 ∈ 𝑃) |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 0 ∈ 𝑃 |
8 | 2sphere.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
9 | 2sphere.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
10 | eqid 2737 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} | |
11 | 1, 8, 5, 9, 10 | 2sphere 46513 | . . 3 ⊢ (( 0 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
12 | 7, 11 | mpan 688 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
13 | 4 | fveq1i 6830 | . . . . . . . . . . . 12 ⊢ ( 0 ‘1) = ((𝐼 × {0})‘1) |
14 | c0ex 11074 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
15 | 1ex 11076 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
16 | 15 | prid1 4714 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {1, 2} |
17 | 16, 1 | eleqtrri 2837 | . . . . . . . . . . . . 13 ⊢ 1 ∈ 𝐼 |
18 | fvconst2g 7137 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0) | |
19 | 14, 17, 18 | mp2an 690 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘1) = 0 |
20 | 13, 19 | eqtri 2765 | . . . . . . . . . . 11 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 7357 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0)) |
23 | 1, 5 | rrx2pxel 46475 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
24 | 23 | recnd 11108 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℂ) |
25 | 24 | subid1d 11426 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − 0) = (𝑝‘1)) |
26 | 22, 25 | eqtrd 2777 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1)) |
27 | 26 | oveq1d 7356 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2)) |
28 | 4 | fveq1i 6830 | . . . . . . . . . . . 12 ⊢ ( 0 ‘2) = ((𝐼 × {0})‘2) |
29 | 2ex 12155 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ V | |
30 | 29 | prid2 4715 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ {1, 2} |
31 | 30, 1 | eleqtrri 2837 | . . . . . . . . . . . . 13 ⊢ 2 ∈ 𝐼 |
32 | fvconst2g 7137 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0) | |
33 | 14, 31, 32 | mp2an 690 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘2) = 0 |
34 | 28, 33 | eqtri 2765 | . . . . . . . . . . 11 ⊢ ( 0 ‘2) = 0 |
35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘2) = 0) |
36 | 35 | oveq2d 7357 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0)) |
37 | 1, 5 | rrx2pyel 46476 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
38 | 37 | recnd 11108 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℂ) |
39 | 38 | subid1d 11426 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − 0) = (𝑝‘2)) |
40 | 36, 39 | eqtrd 2777 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2)) |
41 | 40 | oveq1d 7356 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2)) |
42 | 27, 41 | oveq12d 7359 | . . . . . 6 ⊢ (𝑝 ∈ 𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2))) |
43 | 42 | eqeq1d 2739 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
44 | 43 | adantl 483 | . . . 4 ⊢ ((𝑅 ∈ (0[,)+∞) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
45 | 44 | rabbidva 3411 | . . 3 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}) |
46 | 2sphere0.c | . . 3 ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} | |
47 | 45, 46 | eqtr4di 2795 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶) |
48 | 12, 47 | eqtrd 2777 | 1 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {crab 3404 Vcvv 3442 {csn 4577 {cpr 4579 × cxp 5622 ‘cfv 6483 (class class class)co 7341 ↑m cmap 8690 ℝcr 10975 0cc0 10976 1c1 10977 + caddc 10979 +∞cpnf 11111 − cmin 11310 2c2 12133 [,)cico 13186 ↑cexp 13887 ℝ^crrx 24652 Spherecsph 46492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-tpos 8116 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-sup 9303 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-0g 17249 df-gsum 17250 df-prds 17255 df-pws 17257 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-ghm 18928 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19815 df-ur 19832 df-ring 19879 df-cring 19880 df-oppr 19956 df-dvdsr 19977 df-unit 19978 df-invr 20008 df-dvr 20019 df-rnghom 20053 df-drng 20094 df-field 20095 df-subrg 20126 df-staf 20210 df-srng 20211 df-lmod 20230 df-lss 20299 df-sra 20539 df-rgmod 20540 df-xmet 20695 df-met 20696 df-cnfld 20703 df-refld 20915 df-dsmm 21044 df-frlm 21059 df-nm 23843 df-tng 23845 df-tcph 24438 df-rrx 24654 df-ehl 24655 df-sph 46494 |
This theorem is referenced by: itsclc0 46535 itsclc0b 46536 itscnhlinecirc02p 46549 |
Copyright terms: Public domain | W3C validator |