Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere0 Structured version   Visualization version   GIF version

Theorem 2sphere0 45164
Description: The sphere around the origin 0 (see rrx0 24001) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere0.0 0 = (𝐼 × {0})
2sphere0.c 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere0 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   0 ,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere0
StepHypRef Expression
1 2sphere.i . . . . 5 𝐼 = {1, 2}
2 prex 5298 . . . . 5 {1, 2} ∈ V
31, 2eqeltri 2886 . . . 4 𝐼 ∈ V
4 2sphere0.0 . . . . 5 0 = (𝐼 × {0})
5 2sphere.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
64, 5rrx0el 24002 . . . 4 (𝐼 ∈ V → 0𝑃)
73, 6ax-mp 5 . . 3 0𝑃
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
10 eqid 2798 . . . 4 {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}
111, 8, 5, 9, 102sphere 45163 . . 3 (( 0𝑃𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
127, 11mpan 689 . 2 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
134fveq1i 6646 . . . . . . . . . . . 12 ( 0 ‘1) = ((𝐼 × {0})‘1)
14 c0ex 10624 . . . . . . . . . . . . 13 0 ∈ V
15 1ex 10626 . . . . . . . . . . . . . . 15 1 ∈ V
1615prid1 4658 . . . . . . . . . . . . . 14 1 ∈ {1, 2}
1716, 1eleqtrri 2889 . . . . . . . . . . . . 13 1 ∈ 𝐼
18 fvconst2g 6941 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0)
1914, 17, 18mp2an 691 . . . . . . . . . . . 12 ((𝐼 × {0})‘1) = 0
2013, 19eqtri 2821 . . . . . . . . . . 11 ( 0 ‘1) = 0
2120a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘1) = 0)
2221oveq2d 7151 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0))
231, 5rrx2pxel 45125 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2423recnd 10658 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
2524subid1d 10975 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − 0) = (𝑝‘1))
2622, 25eqtrd 2833 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1))
2726oveq1d 7150 . . . . . . 7 (𝑝𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2))
284fveq1i 6646 . . . . . . . . . . . 12 ( 0 ‘2) = ((𝐼 × {0})‘2)
29 2ex 11702 . . . . . . . . . . . . . . 15 2 ∈ V
3029prid2 4659 . . . . . . . . . . . . . 14 2 ∈ {1, 2}
3130, 1eleqtrri 2889 . . . . . . . . . . . . 13 2 ∈ 𝐼
32 fvconst2g 6941 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0)
3314, 31, 32mp2an 691 . . . . . . . . . . . 12 ((𝐼 × {0})‘2) = 0
3428, 33eqtri 2821 . . . . . . . . . . 11 ( 0 ‘2) = 0
3534a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘2) = 0)
3635oveq2d 7151 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0))
371, 5rrx2pyel 45126 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3837recnd 10658 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
3938subid1d 10975 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − 0) = (𝑝‘2))
4036, 39eqtrd 2833 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2))
4140oveq1d 7150 . . . . . . 7 (𝑝𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2))
4227, 41oveq12d 7153 . . . . . 6 (𝑝𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2)))
4342eqeq1d 2800 . . . . 5 (𝑝𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4443adantl 485 . . . 4 ((𝑅 ∈ (0[,)+∞) ∧ 𝑝𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4544rabbidva 3425 . . 3 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
46 2sphere0.c . . 3 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
4745, 46eqtr4di 2851 . 2 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶)
4812, 47eqtrd 2833 1 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  {csn 4525  {cpr 4527   × cxp 5517  cfv 6324  (class class class)co 7135  m cmap 8389  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  cmin 10859  2c2 11680  [,)cico 12728  cexp 13425  ℝ^crrx 23987  Spherecsph 45142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-xmet 20084  df-met 20085  df-cnfld 20092  df-refld 20294  df-dsmm 20421  df-frlm 20436  df-nm 23189  df-tng 23191  df-tcph 23774  df-rrx 23989  df-ehl 23990  df-sph 45144
This theorem is referenced by:  itsclc0  45185  itsclc0b  45186  itscnhlinecirc02p  45199
  Copyright terms: Public domain W3C validator