| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version | ||
| Description: The sphere around the origin 0 (see rrx0 25349) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| 2sphere.i | ⊢ 𝐼 = {1, 2} |
| 2sphere.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| 2sphere.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| 2sphere.s | ⊢ 𝑆 = (Sphere‘𝐸) |
| 2sphere0.0 | ⊢ 0 = (𝐼 × {0}) |
| 2sphere0.c | ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} |
| Ref | Expression |
|---|---|
| 2sphere0 | ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sphere.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
| 2 | prex 5407 | . . . . 5 ⊢ {1, 2} ∈ V | |
| 3 | 1, 2 | eqeltri 2830 | . . . 4 ⊢ 𝐼 ∈ V |
| 4 | 2sphere0.0 | . . . . 5 ⊢ 0 = (𝐼 × {0}) | |
| 5 | 2sphere.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 6 | 4, 5 | rrx0el 25350 | . . . 4 ⊢ (𝐼 ∈ V → 0 ∈ 𝑃) |
| 7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 0 ∈ 𝑃 |
| 8 | 2sphere.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 9 | 2sphere.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
| 10 | eqid 2735 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} | |
| 11 | 1, 8, 5, 9, 10 | 2sphere 48729 | . . 3 ⊢ (( 0 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
| 12 | 7, 11 | mpan 690 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
| 13 | 4 | fveq1i 6877 | . . . . . . . . . . . 12 ⊢ ( 0 ‘1) = ((𝐼 × {0})‘1) |
| 14 | c0ex 11229 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 15 | 1ex 11231 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
| 16 | 15 | prid1 4738 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {1, 2} |
| 17 | 16, 1 | eleqtrri 2833 | . . . . . . . . . . . . 13 ⊢ 1 ∈ 𝐼 |
| 18 | fvconst2g 7194 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0) | |
| 19 | 14, 17, 18 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘1) = 0 |
| 20 | 13, 19 | eqtri 2758 | . . . . . . . . . . 11 ⊢ ( 0 ‘1) = 0 |
| 21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘1) = 0) |
| 22 | 21 | oveq2d 7421 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0)) |
| 23 | 1, 5 | rrx2pxel 48691 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
| 24 | 23 | recnd 11263 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℂ) |
| 25 | 24 | subid1d 11583 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − 0) = (𝑝‘1)) |
| 26 | 22, 25 | eqtrd 2770 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1)) |
| 27 | 26 | oveq1d 7420 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2)) |
| 28 | 4 | fveq1i 6877 | . . . . . . . . . . . 12 ⊢ ( 0 ‘2) = ((𝐼 × {0})‘2) |
| 29 | 2ex 12317 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ V | |
| 30 | 29 | prid2 4739 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ {1, 2} |
| 31 | 30, 1 | eleqtrri 2833 | . . . . . . . . . . . . 13 ⊢ 2 ∈ 𝐼 |
| 32 | fvconst2g 7194 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0) | |
| 33 | 14, 31, 32 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘2) = 0 |
| 34 | 28, 33 | eqtri 2758 | . . . . . . . . . . 11 ⊢ ( 0 ‘2) = 0 |
| 35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘2) = 0) |
| 36 | 35 | oveq2d 7421 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0)) |
| 37 | 1, 5 | rrx2pyel 48692 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
| 38 | 37 | recnd 11263 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℂ) |
| 39 | 38 | subid1d 11583 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − 0) = (𝑝‘2)) |
| 40 | 36, 39 | eqtrd 2770 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2)) |
| 41 | 40 | oveq1d 7420 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2)) |
| 42 | 27, 41 | oveq12d 7423 | . . . . . 6 ⊢ (𝑝 ∈ 𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2))) |
| 43 | 42 | eqeq1d 2737 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
| 44 | 43 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ (0[,)+∞) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
| 45 | 44 | rabbidva 3422 | . . 3 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}) |
| 46 | 2sphere0.c | . . 3 ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} | |
| 47 | 45, 46 | eqtr4di 2788 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶) |
| 48 | 12, 47 | eqtrd 2770 | 1 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 {csn 4601 {cpr 4603 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 +∞cpnf 11266 − cmin 11466 2c2 12295 [,)cico 13364 ↑cexp 14079 ℝ^crrx 25335 Spherecsph 48708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-drng 20691 df-field 20692 df-staf 20799 df-srng 20800 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-xmet 21308 df-met 21309 df-cnfld 21316 df-refld 21565 df-dsmm 21692 df-frlm 21707 df-nm 24521 df-tng 24523 df-tcph 25121 df-rrx 25337 df-ehl 25338 df-sph 48710 |
| This theorem is referenced by: itsclc0 48751 itsclc0b 48752 itscnhlinecirc02p 48765 |
| Copyright terms: Public domain | W3C validator |