Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere0 Structured version   Visualization version   GIF version

Theorem 2sphere0 48723
Description: The sphere around the origin 0 (see rrx0 25313) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere0.0 0 = (𝐼 × {0})
2sphere0.c 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere0 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   0 ,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere0
StepHypRef Expression
1 2sphere.i . . . . 5 𝐼 = {1, 2}
2 prex 5379 . . . . 5 {1, 2} ∈ V
31, 2eqeltri 2824 . . . 4 𝐼 ∈ V
4 2sphere0.0 . . . . 5 0 = (𝐼 × {0})
5 2sphere.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
64, 5rrx0el 25314 . . . 4 (𝐼 ∈ V → 0𝑃)
73, 6ax-mp 5 . . 3 0𝑃
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
10 eqid 2729 . . . 4 {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}
111, 8, 5, 9, 102sphere 48722 . . 3 (( 0𝑃𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
127, 11mpan 690 . 2 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
134fveq1i 6827 . . . . . . . . . . . 12 ( 0 ‘1) = ((𝐼 × {0})‘1)
14 c0ex 11128 . . . . . . . . . . . . 13 0 ∈ V
15 1ex 11130 . . . . . . . . . . . . . . 15 1 ∈ V
1615prid1 4716 . . . . . . . . . . . . . 14 1 ∈ {1, 2}
1716, 1eleqtrri 2827 . . . . . . . . . . . . 13 1 ∈ 𝐼
18 fvconst2g 7142 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0)
1914, 17, 18mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘1) = 0
2013, 19eqtri 2752 . . . . . . . . . . 11 ( 0 ‘1) = 0
2120a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘1) = 0)
2221oveq2d 7369 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0))
231, 5rrx2pxel 48684 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2423recnd 11162 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
2524subid1d 11482 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − 0) = (𝑝‘1))
2622, 25eqtrd 2764 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1))
2726oveq1d 7368 . . . . . . 7 (𝑝𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2))
284fveq1i 6827 . . . . . . . . . . . 12 ( 0 ‘2) = ((𝐼 × {0})‘2)
29 2ex 12223 . . . . . . . . . . . . . . 15 2 ∈ V
3029prid2 4717 . . . . . . . . . . . . . 14 2 ∈ {1, 2}
3130, 1eleqtrri 2827 . . . . . . . . . . . . 13 2 ∈ 𝐼
32 fvconst2g 7142 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0)
3314, 31, 32mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘2) = 0
3428, 33eqtri 2752 . . . . . . . . . . 11 ( 0 ‘2) = 0
3534a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘2) = 0)
3635oveq2d 7369 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0))
371, 5rrx2pyel 48685 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3837recnd 11162 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
3938subid1d 11482 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − 0) = (𝑝‘2))
4036, 39eqtrd 2764 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2))
4140oveq1d 7368 . . . . . . 7 (𝑝𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2))
4227, 41oveq12d 7371 . . . . . 6 (𝑝𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2)))
4342eqeq1d 2731 . . . . 5 (𝑝𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4443adantl 481 . . . 4 ((𝑅 ∈ (0[,)+∞) ∧ 𝑝𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4544rabbidva 3403 . . 3 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
46 2sphere0.c . . 3 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
4745, 46eqtr4di 2782 . 2 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶)
4812, 47eqtrd 2764 1 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  {csn 4579  {cpr 4581   × cxp 5621  cfv 6486  (class class class)co 7353  m cmap 8760  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  +∞cpnf 11165  cmin 11365  2c2 12201  [,)cico 13268  cexp 13986  ℝ^crrx 25299  Spherecsph 48701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-drng 20634  df-field 20635  df-staf 20742  df-srng 20743  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-xmet 21272  df-met 21273  df-cnfld 21280  df-refld 21530  df-dsmm 21657  df-frlm 21672  df-nm 24486  df-tng 24488  df-tcph 25085  df-rrx 25301  df-ehl 25302  df-sph 48703
This theorem is referenced by:  itsclc0  48744  itsclc0b  48745  itscnhlinecirc02p  48758
  Copyright terms: Public domain W3C validator