Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version |
Description: The sphere around the origin 0 (see rrx0 24561) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
Ref | Expression |
---|---|
2sphere.i | ⊢ 𝐼 = {1, 2} |
2sphere.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
2sphere.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
2sphere.s | ⊢ 𝑆 = (Sphere‘𝐸) |
2sphere0.0 | ⊢ 0 = (𝐼 × {0}) |
2sphere0.c | ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} |
Ref | Expression |
---|---|
2sphere0 | ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sphere.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
2 | prex 5355 | . . . . 5 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2835 | . . . 4 ⊢ 𝐼 ∈ V |
4 | 2sphere0.0 | . . . . 5 ⊢ 0 = (𝐼 × {0}) | |
5 | 2sphere.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
6 | 4, 5 | rrx0el 24562 | . . . 4 ⊢ (𝐼 ∈ V → 0 ∈ 𝑃) |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 0 ∈ 𝑃 |
8 | 2sphere.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
9 | 2sphere.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
10 | eqid 2738 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} | |
11 | 1, 8, 5, 9, 10 | 2sphere 46095 | . . 3 ⊢ (( 0 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
12 | 7, 11 | mpan 687 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
13 | 4 | fveq1i 6775 | . . . . . . . . . . . 12 ⊢ ( 0 ‘1) = ((𝐼 × {0})‘1) |
14 | c0ex 10969 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
15 | 1ex 10971 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
16 | 15 | prid1 4698 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {1, 2} |
17 | 16, 1 | eleqtrri 2838 | . . . . . . . . . . . . 13 ⊢ 1 ∈ 𝐼 |
18 | fvconst2g 7077 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0) | |
19 | 14, 17, 18 | mp2an 689 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘1) = 0 |
20 | 13, 19 | eqtri 2766 | . . . . . . . . . . 11 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 7291 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0)) |
23 | 1, 5 | rrx2pxel 46057 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
24 | 23 | recnd 11003 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℂ) |
25 | 24 | subid1d 11321 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − 0) = (𝑝‘1)) |
26 | 22, 25 | eqtrd 2778 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1)) |
27 | 26 | oveq1d 7290 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2)) |
28 | 4 | fveq1i 6775 | . . . . . . . . . . . 12 ⊢ ( 0 ‘2) = ((𝐼 × {0})‘2) |
29 | 2ex 12050 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ V | |
30 | 29 | prid2 4699 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ {1, 2} |
31 | 30, 1 | eleqtrri 2838 | . . . . . . . . . . . . 13 ⊢ 2 ∈ 𝐼 |
32 | fvconst2g 7077 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0) | |
33 | 14, 31, 32 | mp2an 689 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘2) = 0 |
34 | 28, 33 | eqtri 2766 | . . . . . . . . . . 11 ⊢ ( 0 ‘2) = 0 |
35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘2) = 0) |
36 | 35 | oveq2d 7291 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0)) |
37 | 1, 5 | rrx2pyel 46058 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
38 | 37 | recnd 11003 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℂ) |
39 | 38 | subid1d 11321 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − 0) = (𝑝‘2)) |
40 | 36, 39 | eqtrd 2778 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2)) |
41 | 40 | oveq1d 7290 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2)) |
42 | 27, 41 | oveq12d 7293 | . . . . . 6 ⊢ (𝑝 ∈ 𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2))) |
43 | 42 | eqeq1d 2740 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
44 | 43 | adantl 482 | . . . 4 ⊢ ((𝑅 ∈ (0[,)+∞) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
45 | 44 | rabbidva 3413 | . . 3 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}) |
46 | 2sphere0.c | . . 3 ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} | |
47 | 45, 46 | eqtr4di 2796 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶) |
48 | 12, 47 | eqtrd 2778 | 1 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 {csn 4561 {cpr 4563 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 +∞cpnf 11006 − cmin 11205 2c2 12028 [,)cico 13081 ↑cexp 13782 ℝ^crrx 24547 Spherecsph 46074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-field 19994 df-subrg 20022 df-staf 20105 df-srng 20106 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-xmet 20590 df-met 20591 df-cnfld 20598 df-refld 20810 df-dsmm 20939 df-frlm 20954 df-nm 23738 df-tng 23740 df-tcph 24333 df-rrx 24549 df-ehl 24550 df-sph 46076 |
This theorem is referenced by: itsclc0 46117 itsclc0b 46118 itscnhlinecirc02p 46131 |
Copyright terms: Public domain | W3C validator |