![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version |
Description: The sphere around the origin 0 (see rrx0 24914) with radius π in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
Ref | Expression |
---|---|
2sphere.i | β’ πΌ = {1, 2} |
2sphere.e | β’ πΈ = (β^βπΌ) |
2sphere.p | β’ π = (β βm πΌ) |
2sphere.s | β’ π = (SphereβπΈ) |
2sphere0.0 | β’ 0 = (πΌ Γ {0}) |
2sphere0.c | β’ πΆ = {π β π β£ (((πβ1)β2) + ((πβ2)β2)) = (π β2)} |
Ref | Expression |
---|---|
2sphere0 | β’ (π β (0[,)+β) β ( 0 ππ ) = πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sphere.i | . . . . 5 β’ πΌ = {1, 2} | |
2 | prex 5433 | . . . . 5 β’ {1, 2} β V | |
3 | 1, 2 | eqeltri 2830 | . . . 4 β’ πΌ β V |
4 | 2sphere0.0 | . . . . 5 β’ 0 = (πΌ Γ {0}) | |
5 | 2sphere.p | . . . . 5 β’ π = (β βm πΌ) | |
6 | 4, 5 | rrx0el 24915 | . . . 4 β’ (πΌ β V β 0 β π) |
7 | 3, 6 | ax-mp 5 | . . 3 β’ 0 β π |
8 | 2sphere.e | . . . 4 β’ πΈ = (β^βπΌ) | |
9 | 2sphere.s | . . . 4 β’ π = (SphereβπΈ) | |
10 | eqid 2733 | . . . 4 β’ {π β π β£ ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2)} = {π β π β£ ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2)} | |
11 | 1, 8, 5, 9, 10 | 2sphere 47435 | . . 3 β’ (( 0 β π β§ π β (0[,)+β)) β ( 0 ππ ) = {π β π β£ ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2)}) |
12 | 7, 11 | mpan 689 | . 2 β’ (π β (0[,)+β) β ( 0 ππ ) = {π β π β£ ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2)}) |
13 | 4 | fveq1i 6893 | . . . . . . . . . . . 12 β’ ( 0 β1) = ((πΌ Γ {0})β1) |
14 | c0ex 11208 | . . . . . . . . . . . . 13 β’ 0 β V | |
15 | 1ex 11210 | . . . . . . . . . . . . . . 15 β’ 1 β V | |
16 | 15 | prid1 4767 | . . . . . . . . . . . . . 14 β’ 1 β {1, 2} |
17 | 16, 1 | eleqtrri 2833 | . . . . . . . . . . . . 13 β’ 1 β πΌ |
18 | fvconst2g 7203 | . . . . . . . . . . . . 13 β’ ((0 β V β§ 1 β πΌ) β ((πΌ Γ {0})β1) = 0) | |
19 | 14, 17, 18 | mp2an 691 | . . . . . . . . . . . 12 β’ ((πΌ Γ {0})β1) = 0 |
20 | 13, 19 | eqtri 2761 | . . . . . . . . . . 11 β’ ( 0 β1) = 0 |
21 | 20 | a1i 11 | . . . . . . . . . 10 β’ (π β π β ( 0 β1) = 0) |
22 | 21 | oveq2d 7425 | . . . . . . . . 9 β’ (π β π β ((πβ1) β ( 0 β1)) = ((πβ1) β 0)) |
23 | 1, 5 | rrx2pxel 47397 | . . . . . . . . . . 11 β’ (π β π β (πβ1) β β) |
24 | 23 | recnd 11242 | . . . . . . . . . 10 β’ (π β π β (πβ1) β β) |
25 | 24 | subid1d 11560 | . . . . . . . . 9 β’ (π β π β ((πβ1) β 0) = (πβ1)) |
26 | 22, 25 | eqtrd 2773 | . . . . . . . 8 β’ (π β π β ((πβ1) β ( 0 β1)) = (πβ1)) |
27 | 26 | oveq1d 7424 | . . . . . . 7 β’ (π β π β (((πβ1) β ( 0 β1))β2) = ((πβ1)β2)) |
28 | 4 | fveq1i 6893 | . . . . . . . . . . . 12 β’ ( 0 β2) = ((πΌ Γ {0})β2) |
29 | 2ex 12289 | . . . . . . . . . . . . . . 15 β’ 2 β V | |
30 | 29 | prid2 4768 | . . . . . . . . . . . . . 14 β’ 2 β {1, 2} |
31 | 30, 1 | eleqtrri 2833 | . . . . . . . . . . . . 13 β’ 2 β πΌ |
32 | fvconst2g 7203 | . . . . . . . . . . . . 13 β’ ((0 β V β§ 2 β πΌ) β ((πΌ Γ {0})β2) = 0) | |
33 | 14, 31, 32 | mp2an 691 | . . . . . . . . . . . 12 β’ ((πΌ Γ {0})β2) = 0 |
34 | 28, 33 | eqtri 2761 | . . . . . . . . . . 11 β’ ( 0 β2) = 0 |
35 | 34 | a1i 11 | . . . . . . . . . 10 β’ (π β π β ( 0 β2) = 0) |
36 | 35 | oveq2d 7425 | . . . . . . . . 9 β’ (π β π β ((πβ2) β ( 0 β2)) = ((πβ2) β 0)) |
37 | 1, 5 | rrx2pyel 47398 | . . . . . . . . . . 11 β’ (π β π β (πβ2) β β) |
38 | 37 | recnd 11242 | . . . . . . . . . 10 β’ (π β π β (πβ2) β β) |
39 | 38 | subid1d 11560 | . . . . . . . . 9 β’ (π β π β ((πβ2) β 0) = (πβ2)) |
40 | 36, 39 | eqtrd 2773 | . . . . . . . 8 β’ (π β π β ((πβ2) β ( 0 β2)) = (πβ2)) |
41 | 40 | oveq1d 7424 | . . . . . . 7 β’ (π β π β (((πβ2) β ( 0 β2))β2) = ((πβ2)β2)) |
42 | 27, 41 | oveq12d 7427 | . . . . . 6 β’ (π β π β ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (((πβ1)β2) + ((πβ2)β2))) |
43 | 42 | eqeq1d 2735 | . . . . 5 β’ (π β π β (((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2) β (((πβ1)β2) + ((πβ2)β2)) = (π β2))) |
44 | 43 | adantl 483 | . . . 4 β’ ((π β (0[,)+β) β§ π β π) β (((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2) β (((πβ1)β2) + ((πβ2)β2)) = (π β2))) |
45 | 44 | rabbidva 3440 | . . 3 β’ (π β (0[,)+β) β {π β π β£ ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2)} = {π β π β£ (((πβ1)β2) + ((πβ2)β2)) = (π β2)}) |
46 | 2sphere0.c | . . 3 β’ πΆ = {π β π β£ (((πβ1)β2) + ((πβ2)β2)) = (π β2)} | |
47 | 45, 46 | eqtr4di 2791 | . 2 β’ (π β (0[,)+β) β {π β π β£ ((((πβ1) β ( 0 β1))β2) + (((πβ2) β ( 0 β2))β2)) = (π β2)} = πΆ) |
48 | 12, 47 | eqtrd 2773 | 1 β’ (π β (0[,)+β) β ( 0 ππ ) = πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 {crab 3433 Vcvv 3475 {csn 4629 {cpr 4631 Γ cxp 5675 βcfv 6544 (class class class)co 7409 βm cmap 8820 βcr 11109 0cc0 11110 1c1 11111 + caddc 11113 +βcpnf 11245 β cmin 11444 2c2 12267 [,)cico 13326 βcexp 14027 β^crrx 24900 Spherecsph 47414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-ghm 19090 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-rnghom 20251 df-subrg 20317 df-drng 20359 df-field 20360 df-staf 20453 df-srng 20454 df-lmod 20473 df-lss 20543 df-sra 20785 df-rgmod 20786 df-xmet 20937 df-met 20938 df-cnfld 20945 df-refld 21158 df-dsmm 21287 df-frlm 21302 df-nm 24091 df-tng 24093 df-tcph 24686 df-rrx 24902 df-ehl 24903 df-sph 47416 |
This theorem is referenced by: itsclc0 47457 itsclc0b 47458 itscnhlinecirc02p 47471 |
Copyright terms: Public domain | W3C validator |