![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version |
Description: The sphere around the origin 0 (see rrx0 25450) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
Ref | Expression |
---|---|
2sphere.i | ⊢ 𝐼 = {1, 2} |
2sphere.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
2sphere.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
2sphere.s | ⊢ 𝑆 = (Sphere‘𝐸) |
2sphere0.0 | ⊢ 0 = (𝐼 × {0}) |
2sphere0.c | ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} |
Ref | Expression |
---|---|
2sphere0 | ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sphere.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
2 | prex 5452 | . . . . 5 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2840 | . . . 4 ⊢ 𝐼 ∈ V |
4 | 2sphere0.0 | . . . . 5 ⊢ 0 = (𝐼 × {0}) | |
5 | 2sphere.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
6 | 4, 5 | rrx0el 25451 | . . . 4 ⊢ (𝐼 ∈ V → 0 ∈ 𝑃) |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 0 ∈ 𝑃 |
8 | 2sphere.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
9 | 2sphere.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
10 | eqid 2740 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} | |
11 | 1, 8, 5, 9, 10 | 2sphere 48483 | . . 3 ⊢ (( 0 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
12 | 7, 11 | mpan 689 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
13 | 4 | fveq1i 6921 | . . . . . . . . . . . 12 ⊢ ( 0 ‘1) = ((𝐼 × {0})‘1) |
14 | c0ex 11284 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
15 | 1ex 11286 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
16 | 15 | prid1 4787 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {1, 2} |
17 | 16, 1 | eleqtrri 2843 | . . . . . . . . . . . . 13 ⊢ 1 ∈ 𝐼 |
18 | fvconst2g 7239 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0) | |
19 | 14, 17, 18 | mp2an 691 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘1) = 0 |
20 | 13, 19 | eqtri 2768 | . . . . . . . . . . 11 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 7464 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0)) |
23 | 1, 5 | rrx2pxel 48445 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
24 | 23 | recnd 11318 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℂ) |
25 | 24 | subid1d 11636 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − 0) = (𝑝‘1)) |
26 | 22, 25 | eqtrd 2780 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1)) |
27 | 26 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2)) |
28 | 4 | fveq1i 6921 | . . . . . . . . . . . 12 ⊢ ( 0 ‘2) = ((𝐼 × {0})‘2) |
29 | 2ex 12370 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ V | |
30 | 29 | prid2 4788 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ {1, 2} |
31 | 30, 1 | eleqtrri 2843 | . . . . . . . . . . . . 13 ⊢ 2 ∈ 𝐼 |
32 | fvconst2g 7239 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0) | |
33 | 14, 31, 32 | mp2an 691 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘2) = 0 |
34 | 28, 33 | eqtri 2768 | . . . . . . . . . . 11 ⊢ ( 0 ‘2) = 0 |
35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘2) = 0) |
36 | 35 | oveq2d 7464 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0)) |
37 | 1, 5 | rrx2pyel 48446 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
38 | 37 | recnd 11318 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℂ) |
39 | 38 | subid1d 11636 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − 0) = (𝑝‘2)) |
40 | 36, 39 | eqtrd 2780 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2)) |
41 | 40 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2)) |
42 | 27, 41 | oveq12d 7466 | . . . . . 6 ⊢ (𝑝 ∈ 𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2))) |
43 | 42 | eqeq1d 2742 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
44 | 43 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ (0[,)+∞) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
45 | 44 | rabbidva 3450 | . . 3 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}) |
46 | 2sphere0.c | . . 3 ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} | |
47 | 45, 46 | eqtr4di 2798 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶) |
48 | 12, 47 | eqtrd 2780 | 1 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 {cpr 4650 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 +∞cpnf 11321 − cmin 11520 2c2 12348 [,)cico 13409 ↑cexp 14112 ℝ^crrx 25436 Spherecsph 48462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-staf 20862 df-srng 20863 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-xmet 21380 df-met 21381 df-cnfld 21388 df-refld 21646 df-dsmm 21775 df-frlm 21790 df-nm 24616 df-tng 24618 df-tcph 25222 df-rrx 25438 df-ehl 25439 df-sph 48464 |
This theorem is referenced by: itsclc0 48505 itsclc0b 48506 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |