| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sphere0 | Structured version Visualization version GIF version | ||
| Description: The sphere around the origin 0 (see rrx0 25334) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| 2sphere.i | ⊢ 𝐼 = {1, 2} |
| 2sphere.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| 2sphere.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| 2sphere.s | ⊢ 𝑆 = (Sphere‘𝐸) |
| 2sphere0.0 | ⊢ 0 = (𝐼 × {0}) |
| 2sphere0.c | ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} |
| Ref | Expression |
|---|---|
| 2sphere0 | ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sphere.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
| 2 | prex 5379 | . . . . 5 ⊢ {1, 2} ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | . . . 4 ⊢ 𝐼 ∈ V |
| 4 | 2sphere0.0 | . . . . 5 ⊢ 0 = (𝐼 × {0}) | |
| 5 | 2sphere.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 6 | 4, 5 | rrx0el 25335 | . . . 4 ⊢ (𝐼 ∈ V → 0 ∈ 𝑃) |
| 7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 0 ∈ 𝑃 |
| 8 | 2sphere.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 9 | 2sphere.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
| 10 | eqid 2733 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} | |
| 11 | 1, 8, 5, 9, 10 | 2sphere 48864 | . . 3 ⊢ (( 0 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
| 12 | 7, 11 | mpan 690 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}) |
| 13 | 4 | fveq1i 6832 | . . . . . . . . . . . 12 ⊢ ( 0 ‘1) = ((𝐼 × {0})‘1) |
| 14 | c0ex 11116 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 15 | 1ex 11118 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
| 16 | 15 | prid1 4716 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {1, 2} |
| 17 | 16, 1 | eleqtrri 2832 | . . . . . . . . . . . . 13 ⊢ 1 ∈ 𝐼 |
| 18 | fvconst2g 7145 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0) | |
| 19 | 14, 17, 18 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘1) = 0 |
| 20 | 13, 19 | eqtri 2756 | . . . . . . . . . . 11 ⊢ ( 0 ‘1) = 0 |
| 21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘1) = 0) |
| 22 | 21 | oveq2d 7371 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0)) |
| 23 | 1, 5 | rrx2pxel 48826 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
| 24 | 23 | recnd 11150 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℂ) |
| 25 | 24 | subid1d 11471 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − 0) = (𝑝‘1)) |
| 26 | 22, 25 | eqtrd 2768 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1)) |
| 27 | 26 | oveq1d 7370 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2)) |
| 28 | 4 | fveq1i 6832 | . . . . . . . . . . . 12 ⊢ ( 0 ‘2) = ((𝐼 × {0})‘2) |
| 29 | 2ex 12212 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ V | |
| 30 | 29 | prid2 4717 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ {1, 2} |
| 31 | 30, 1 | eleqtrri 2832 | . . . . . . . . . . . . 13 ⊢ 2 ∈ 𝐼 |
| 32 | fvconst2g 7145 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0) | |
| 33 | 14, 31, 32 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝐼 × {0})‘2) = 0 |
| 34 | 28, 33 | eqtri 2756 | . . . . . . . . . . 11 ⊢ ( 0 ‘2) = 0 |
| 35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → ( 0 ‘2) = 0) |
| 36 | 35 | oveq2d 7371 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0)) |
| 37 | 1, 5 | rrx2pyel 48827 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
| 38 | 37 | recnd 11150 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℂ) |
| 39 | 38 | subid1d 11471 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − 0) = (𝑝‘2)) |
| 40 | 36, 39 | eqtrd 2768 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2)) |
| 41 | 40 | oveq1d 7370 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2)) |
| 42 | 27, 41 | oveq12d 7373 | . . . . . 6 ⊢ (𝑝 ∈ 𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2))) |
| 43 | 42 | eqeq1d 2735 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
| 44 | 43 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ (0[,)+∞) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2))) |
| 45 | 44 | rabbidva 3403 | . . 3 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}) |
| 46 | 2sphere0.c | . . 3 ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} | |
| 47 | 45, 46 | eqtr4di 2786 | . 2 ⊢ (𝑅 ∈ (0[,)+∞) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶) |
| 48 | 12, 47 | eqtrd 2768 | 1 ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 {csn 4577 {cpr 4579 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 ℝcr 11015 0cc0 11016 1c1 11017 + caddc 11019 +∞cpnf 11153 − cmin 11354 2c2 12190 [,)cico 13257 ↑cexp 13978 ℝ^crrx 25320 Spherecsph 48843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-sum 15604 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-0g 17355 df-gsum 17356 df-prds 17361 df-pws 17363 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-ghm 19135 df-cntz 19239 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-rhm 20400 df-subrng 20471 df-subrg 20495 df-drng 20656 df-field 20657 df-staf 20764 df-srng 20765 df-lmod 20805 df-lss 20875 df-sra 21117 df-rgmod 21118 df-xmet 21294 df-met 21295 df-cnfld 21302 df-refld 21552 df-dsmm 21679 df-frlm 21694 df-nm 24507 df-tng 24509 df-tcph 25106 df-rrx 25322 df-ehl 25323 df-sph 48845 |
| This theorem is referenced by: itsclc0 48886 itsclc0b 48887 itscnhlinecirc02p 48900 |
| Copyright terms: Public domain | W3C validator |