Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere0 Structured version   Visualization version   GIF version

Theorem 2sphere0 48730
Description: The sphere around the origin 0 (see rrx0 25349) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere0.0 0 = (𝐼 × {0})
2sphere0.c 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere0 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   0 ,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere0
StepHypRef Expression
1 2sphere.i . . . . 5 𝐼 = {1, 2}
2 prex 5407 . . . . 5 {1, 2} ∈ V
31, 2eqeltri 2830 . . . 4 𝐼 ∈ V
4 2sphere0.0 . . . . 5 0 = (𝐼 × {0})
5 2sphere.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
64, 5rrx0el 25350 . . . 4 (𝐼 ∈ V → 0𝑃)
73, 6ax-mp 5 . . 3 0𝑃
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
10 eqid 2735 . . . 4 {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)}
111, 8, 5, 9, 102sphere 48729 . . 3 (( 0𝑃𝑅 ∈ (0[,)+∞)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
127, 11mpan 690 . 2 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)})
134fveq1i 6877 . . . . . . . . . . . 12 ( 0 ‘1) = ((𝐼 × {0})‘1)
14 c0ex 11229 . . . . . . . . . . . . 13 0 ∈ V
15 1ex 11231 . . . . . . . . . . . . . . 15 1 ∈ V
1615prid1 4738 . . . . . . . . . . . . . 14 1 ∈ {1, 2}
1716, 1eleqtrri 2833 . . . . . . . . . . . . 13 1 ∈ 𝐼
18 fvconst2g 7194 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 1 ∈ 𝐼) → ((𝐼 × {0})‘1) = 0)
1914, 17, 18mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘1) = 0
2013, 19eqtri 2758 . . . . . . . . . . 11 ( 0 ‘1) = 0
2120a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘1) = 0)
2221oveq2d 7421 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = ((𝑝‘1) − 0))
231, 5rrx2pxel 48691 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2423recnd 11263 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
2524subid1d 11583 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘1) − 0) = (𝑝‘1))
2622, 25eqtrd 2770 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘1) − ( 0 ‘1)) = (𝑝‘1))
2726oveq1d 7420 . . . . . . 7 (𝑝𝑃 → (((𝑝‘1) − ( 0 ‘1))↑2) = ((𝑝‘1)↑2))
284fveq1i 6877 . . . . . . . . . . . 12 ( 0 ‘2) = ((𝐼 × {0})‘2)
29 2ex 12317 . . . . . . . . . . . . . . 15 2 ∈ V
3029prid2 4739 . . . . . . . . . . . . . 14 2 ∈ {1, 2}
3130, 1eleqtrri 2833 . . . . . . . . . . . . 13 2 ∈ 𝐼
32 fvconst2g 7194 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 2 ∈ 𝐼) → ((𝐼 × {0})‘2) = 0)
3314, 31, 32mp2an 692 . . . . . . . . . . . 12 ((𝐼 × {0})‘2) = 0
3428, 33eqtri 2758 . . . . . . . . . . 11 ( 0 ‘2) = 0
3534a1i 11 . . . . . . . . . 10 (𝑝𝑃 → ( 0 ‘2) = 0)
3635oveq2d 7421 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = ((𝑝‘2) − 0))
371, 5rrx2pyel 48692 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3837recnd 11263 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
3938subid1d 11583 . . . . . . . . 9 (𝑝𝑃 → ((𝑝‘2) − 0) = (𝑝‘2))
4036, 39eqtrd 2770 . . . . . . . 8 (𝑝𝑃 → ((𝑝‘2) − ( 0 ‘2)) = (𝑝‘2))
4140oveq1d 7420 . . . . . . 7 (𝑝𝑃 → (((𝑝‘2) − ( 0 ‘2))↑2) = ((𝑝‘2)↑2))
4227, 41oveq12d 7423 . . . . . 6 (𝑝𝑃 → ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (((𝑝‘1)↑2) + ((𝑝‘2)↑2)))
4342eqeq1d 2737 . . . . 5 (𝑝𝑃 → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4443adantl 481 . . . 4 ((𝑅 ∈ (0[,)+∞) ∧ 𝑝𝑃) → (((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2) ↔ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)))
4544rabbidva 3422 . . 3 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
46 2sphere0.c . . 3 𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
4745, 46eqtr4di 2788 . 2 (𝑅 ∈ (0[,)+∞) → {𝑝𝑃 ∣ ((((𝑝‘1) − ( 0 ‘1))↑2) + (((𝑝‘2) − ( 0 ‘2))↑2)) = (𝑅↑2)} = 𝐶)
4812, 47eqtrd 2770 1 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  {csn 4601  {cpr 4603   × cxp 5652  cfv 6531  (class class class)co 7405  m cmap 8840  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  +∞cpnf 11266  cmin 11466  2c2 12295  [,)cico 13364  cexp 14079  ℝ^crrx 25335  Spherecsph 48708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-xmet 21308  df-met 21309  df-cnfld 21316  df-refld 21565  df-dsmm 21692  df-frlm 21707  df-nm 24521  df-tng 24523  df-tcph 25121  df-rrx 25337  df-ehl 25338  df-sph 48710
This theorem is referenced by:  itsclc0  48751  itsclc0b  48752  itscnhlinecirc02p  48765
  Copyright terms: Public domain W3C validator