| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomen2 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
| Ref | Expression |
|---|---|
| sdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomentr 9024 | . . 3 ⊢ ((𝐶 ≺ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≺ 𝐵) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐴) → 𝐶 ≺ 𝐵) |
| 3 | ensym 8925 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 4 | sdomentr 9024 | . . . 4 ⊢ ((𝐶 ≺ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≺ 𝐴) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
| 6 | 3, 5 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
| 7 | 2, 6 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5089 ≈ cen 8866 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: djuxpdom 10077 alephval2 10463 engch 10519 canthp1lem2 10544 hargch 10564 alephgch 10565 ovoliunnfl 37712 |
| Copyright terms: Public domain | W3C validator |