![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
Ref | Expression |
---|---|
sdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomentr 9150 | . . 3 ⊢ ((𝐶 ≺ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≺ 𝐵) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐴) → 𝐶 ≺ 𝐵) |
3 | ensym 9042 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | sdomentr 9150 | . . . 4 ⊢ ((𝐶 ≺ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≺ 𝐴) | |
5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
6 | 3, 5 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
7 | 2, 6 | impbida 801 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5148 ≈ cen 8981 ≺ csdm 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: djuxpdom 10224 alephval2 10610 engch 10666 canthp1lem2 10691 hargch 10711 alephgch 10712 ovoliunnfl 37649 |
Copyright terms: Public domain | W3C validator |