| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomen2 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
| Ref | Expression |
|---|---|
| sdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomentr 9028 | . . 3 ⊢ ((𝐶 ≺ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≺ 𝐵) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐴) → 𝐶 ≺ 𝐵) |
| 3 | ensym 8928 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 4 | sdomentr 9028 | . . . 4 ⊢ ((𝐶 ≺ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≺ 𝐴) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
| 6 | 3, 5 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
| 7 | 2, 6 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5092 ≈ cen 8869 ≺ csdm 8871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 |
| This theorem is referenced by: djuxpdom 10080 alephval2 10466 engch 10522 canthp1lem2 10547 hargch 10567 alephgch 10568 ovoliunnfl 37642 |
| Copyright terms: Public domain | W3C validator |