MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomen2 Structured version   Visualization version   GIF version

Theorem sdomen2 9110
Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
sdomen2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem sdomen2
StepHypRef Expression
1 sdomentr 9099 . . 3 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
21ancoms 460 . 2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
3 ensym 8987 . . 3 (𝐴𝐵𝐵𝐴)
4 sdomentr 9099 . . . 4 ((𝐶𝐵𝐵𝐴) → 𝐶𝐴)
54ancoms 460 . . 3 ((𝐵𝐴𝐶𝐵) → 𝐶𝐴)
63, 5sylan 581 . 2 ((𝐴𝐵𝐶𝐵) → 𝐶𝐴)
72, 6impbida 800 1 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   class class class wbr 5144  cen 8924  csdm 8926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930
This theorem is referenced by:  djuxpdom  10167  alephval2  10554  engch  10610  canthp1lem2  10635  hargch  10655  alephgch  10656  ovoliunnfl  36435
  Copyright terms: Public domain W3C validator