Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
Ref | Expression |
---|---|
sdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomentr 8780 | . . 3 ⊢ ((𝐶 ≺ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≺ 𝐵) | |
2 | 1 | ancoms 462 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐴) → 𝐶 ≺ 𝐵) |
3 | ensym 8677 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | sdomentr 8780 | . . . 4 ⊢ ((𝐶 ≺ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≺ 𝐴) | |
5 | 4 | ancoms 462 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
6 | 3, 5 | sylan 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≺ 𝐵) → 𝐶 ≺ 𝐴) |
7 | 2, 6 | impbida 801 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 class class class wbr 5053 ≈ cen 8623 ≺ csdm 8625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 |
This theorem is referenced by: djuxpdom 9799 alephval2 10186 engch 10242 canthp1lem2 10267 hargch 10287 alephgch 10288 ovoliunnfl 35556 |
Copyright terms: Public domain | W3C validator |