| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| sdomentr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8896 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | sdomdomtr 9018 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5086 ≈ cen 8861 ≼ cdom 8862 ≺ csdm 8863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 |
| This theorem is referenced by: sdomen2 9030 unxpdom2 9139 sucxpdom 9140 fofinf1o 9211 sdomsdomcardi 9859 cardsdomel 9862 cardmin2 9887 alephnbtwn2 9958 pwsdompw 10089 infdif2 10095 fin23lem27 10214 axcclem 10343 numthcor 10380 sdomsdomcard 10446 pwcfsdom 10469 cfpwsdom 10470 inawinalem 10575 inatsk 10664 r1tskina 10668 tskuni 10669 rucALT 16134 iunmbl2 25480 dirith2 27461 erdszelem10 35236 mblfinlem1 37697 pellex 42868 rp-isfinite6 43551 harval3 43571 |
| Copyright terms: Public domain | W3C validator |