MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomentr Structured version   Visualization version   GIF version

Theorem sdomentr 9062
Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
sdomentr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomentr
StepHypRef Expression
1 endom 8926 . 2 (𝐵𝐶𝐵𝐶)
2 sdomdomtr 9061 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 594 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   class class class wbr 5110  cen 8887  cdom 8888  csdm 8889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893
This theorem is referenced by:  sdomen2  9073  unxpdom2  9205  sucxpdom  9206  findcard3OLD  9237  fofinf1o  9278  sdomsdomcardi  9914  cardsdomel  9917  cardmin2  9942  alephnbtwn2  10015  pwsdompw  10147  infdif2  10153  fin23lem27  10271  axcclem  10400  numthcor  10437  sdomsdomcard  10503  pwcfsdom  10526  cfpwsdom  10527  inawinalem  10632  inatsk  10721  r1tskina  10725  tskuni  10726  rucALT  16119  iunmbl2  24937  dirith2  26892  erdszelem10  33834  mblfinlem1  36144  pellex  41187  rp-isfinite6  41864  harval3  41884
  Copyright terms: Public domain W3C validator