Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomentr | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
sdomentr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8767 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | sdomdomtr 8897 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 |
This theorem is referenced by: sdomen2 8909 unxpdom2 9031 sucxpdom 9032 findcard3 9057 fofinf1o 9094 sdomsdomcardi 9729 cardsdomel 9732 cardmin2 9757 alephnbtwn2 9828 pwsdompw 9960 infdif2 9966 fin23lem27 10084 axcclem 10213 numthcor 10250 sdomsdomcard 10316 pwcfsdom 10339 cfpwsdom 10340 inawinalem 10445 inatsk 10534 r1tskina 10538 tskuni 10539 rucALT 15939 iunmbl2 24721 dirith2 26676 erdszelem10 33162 mblfinlem1 35814 pellex 40657 rp-isfinite6 41125 harval3 41145 |
Copyright terms: Public domain | W3C validator |