Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomentr | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
sdomentr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8759 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | sdomdomtr 8888 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 class class class wbr 5079 ≈ cen 8722 ≼ cdom 8723 ≺ csdm 8724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 |
This theorem is referenced by: sdomen2 8900 unxpdom2 9019 sucxpdom 9020 findcard3 9045 fofinf1o 9082 sdomsdomcardi 9740 cardsdomel 9743 cardmin2 9768 alephnbtwn2 9839 pwsdompw 9971 infdif2 9977 fin23lem27 10095 axcclem 10224 numthcor 10261 sdomsdomcard 10327 pwcfsdom 10350 cfpwsdom 10351 inawinalem 10456 inatsk 10545 r1tskina 10549 tskuni 10550 rucALT 15950 iunmbl2 24732 dirith2 26687 erdszelem10 33171 mblfinlem1 35823 pellex 40666 rp-isfinite6 41116 harval3 41134 |
Copyright terms: Public domain | W3C validator |