MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomentr Structured version   Visualization version   GIF version

Theorem sdomentr 9177
Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
sdomentr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomentr
StepHypRef Expression
1 endom 9039 . 2 (𝐵𝐶𝐵𝐶)
2 sdomdomtr 9176 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 592 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  sdomen2  9188  unxpdom2  9317  sucxpdom  9318  findcard3OLD  9347  fofinf1o  9400  sdomsdomcardi  10040  cardsdomel  10043  cardmin2  10068  alephnbtwn2  10141  pwsdompw  10272  infdif2  10278  fin23lem27  10397  axcclem  10526  numthcor  10563  sdomsdomcard  10629  pwcfsdom  10652  cfpwsdom  10653  inawinalem  10758  inatsk  10847  r1tskina  10851  tskuni  10852  rucALT  16278  iunmbl2  25611  dirith2  27590  erdszelem10  35168  mblfinlem1  37617  pellex  42791  rp-isfinite6  43480  harval3  43500
  Copyright terms: Public domain W3C validator