MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomentr Structured version   Visualization version   GIF version

Theorem sdomentr 9151
Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
sdomentr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomentr
StepHypRef Expression
1 endom 9019 . 2 (𝐵𝐶𝐵𝐶)
2 sdomdomtr 9150 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 593 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5143  cen 8982  cdom 8983  csdm 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988
This theorem is referenced by:  sdomen2  9162  unxpdom2  9290  sucxpdom  9291  findcard3OLD  9319  fofinf1o  9372  sdomsdomcardi  10011  cardsdomel  10014  cardmin2  10039  alephnbtwn2  10112  pwsdompw  10243  infdif2  10249  fin23lem27  10368  axcclem  10497  numthcor  10534  sdomsdomcard  10600  pwcfsdom  10623  cfpwsdom  10624  inawinalem  10729  inatsk  10818  r1tskina  10822  tskuni  10823  rucALT  16266  iunmbl2  25592  dirith2  27572  erdszelem10  35205  mblfinlem1  37664  pellex  42846  rp-isfinite6  43531  harval3  43551
  Copyright terms: Public domain W3C validator