![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomentr | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
sdomentr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 9009 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | sdomdomtr 9147 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan2 591 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 class class class wbr 5152 ≈ cen 8970 ≼ cdom 8971 ≺ csdm 8972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 |
This theorem is referenced by: sdomen2 9159 unxpdom2 9291 sucxpdom 9292 findcard3OLD 9323 fofinf1o 9367 sdomsdomcardi 10010 cardsdomel 10013 cardmin2 10038 alephnbtwn2 10111 pwsdompw 10243 infdif2 10249 fin23lem27 10367 axcclem 10496 numthcor 10533 sdomsdomcard 10599 pwcfsdom 10622 cfpwsdom 10623 inawinalem 10728 inatsk 10817 r1tskina 10821 tskuni 10822 rucALT 16227 iunmbl2 25569 dirith2 27549 erdszelem10 34980 mblfinlem1 37306 pellex 42429 rp-isfinite6 43122 harval3 43142 |
Copyright terms: Public domain | W3C validator |