Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfmbl Structured version   Visualization version   GIF version

Theorem sibfmbl 34299
Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfmbl (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))

Proof of Theorem sibfmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . 4 𝐵 = (Base‘𝑊)
3 sitgval.j . . . 4 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . 4 0 = (0g𝑊)
6 sitgval.x . . . 4 · = ( ·𝑠𝑊)
7 sitgval.h . . . 4 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . 4 (𝜑𝑊𝑉)
9 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 34297 . . 3 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 232 . 2 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp1d 1142 1 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3908  {csn 4585   cuni 4867  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  +∞cpnf 11181  [,)cico 13284  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  TopOpenctopn 17360  0gc0g 17378  ℝHomcrrh 33956  sigaGencsigagen 34101  measurescmeas 34158  MblFnMcmbfm 34212  sitgcsitg 34293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-sitg 34294
This theorem is referenced by:  sibff  34300  sibfinima  34303  sibfof  34304  sitgfval  34305  sitgclg  34306
  Copyright terms: Public domain W3C validator