Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfmbl Structured version   Visualization version   GIF version

Theorem sibfmbl 31593
Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfmbl (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))

Proof of Theorem sibfmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . 4 𝐵 = (Base‘𝑊)
3 sitgval.j . . . 4 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . 4 0 = (0g𝑊)
6 sitgval.x . . . 4 · = ( ·𝑠𝑊)
7 sitgval.h . . . 4 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . 4 (𝜑𝑊𝑉)
9 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 31591 . . 3 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 234 . 2 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp1d 1138 1 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cdif 3933  {csn 4567   cuni 4838  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  cfv 6355  (class class class)co 7156  Fincfn 8509  0cc0 10537  +∞cpnf 10672  [,)cico 12741  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  TopOpenctopn 16695  0gc0g 16713  ℝHomcrrh 31234  sigaGencsigagen 31397  measurescmeas 31454  MblFnMcmbfm 31508  sitgcsitg 31587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-sitg 31588
This theorem is referenced by:  sibff  31594  sibfinima  31597  sibfof  31598  sitgfval  31599  sitgclg  31600
  Copyright terms: Public domain W3C validator