Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfmbl Structured version   Visualization version   GIF version

Theorem sibfmbl 32975
Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐡 = (Baseβ€˜π‘Š)
sitgval.j 𝐽 = (TopOpenβ€˜π‘Š)
sitgval.s 𝑆 = (sigaGenβ€˜π½)
sitgval.0 0 = (0gβ€˜π‘Š)
sitgval.x Β· = ( ·𝑠 β€˜π‘Š)
sitgval.h 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
sitgval.1 (πœ‘ β†’ π‘Š ∈ 𝑉)
sitgval.2 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
sibfmbl.1 (πœ‘ β†’ 𝐹 ∈ dom (π‘Šsitg𝑀))
Assertion
Ref Expression
sibfmbl (πœ‘ β†’ 𝐹 ∈ (dom 𝑀MblFnM𝑆))

Proof of Theorem sibfmbl
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . 3 (πœ‘ β†’ 𝐹 ∈ dom (π‘Šsitg𝑀))
2 sitgval.b . . . 4 𝐡 = (Baseβ€˜π‘Š)
3 sitgval.j . . . 4 𝐽 = (TopOpenβ€˜π‘Š)
4 sitgval.s . . . 4 𝑆 = (sigaGenβ€˜π½)
5 sitgval.0 . . . 4 0 = (0gβ€˜π‘Š)
6 sitgval.x . . . 4 Β· = ( ·𝑠 β€˜π‘Š)
7 sitgval.h . . . 4 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
8 sitgval.1 . . . 4 (πœ‘ β†’ π‘Š ∈ 𝑉)
9 sitgval.2 . . . 4 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 32973 . . 3 (πœ‘ β†’ (𝐹 ∈ dom (π‘Šsitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝐹 βˆ– { 0 })(π‘€β€˜(◑𝐹 β€œ {π‘₯})) ∈ (0[,)+∞))))
111, 10mpbid 231 . 2 (πœ‘ β†’ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝐹 βˆ– { 0 })(π‘€β€˜(◑𝐹 β€œ {π‘₯})) ∈ (0[,)+∞)))
1211simp1d 1143 1 (πœ‘ β†’ 𝐹 ∈ (dom 𝑀MblFnM𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065   βˆ– cdif 3912  {csn 4591  βˆͺ cuni 4870  β—‘ccnv 5637  dom cdm 5638  ran crn 5639   β€œ cima 5641  β€˜cfv 6501  (class class class)co 7362  Fincfn 8890  0cc0 11058  +∞cpnf 11193  [,)cico 13273  Basecbs 17090  Scalarcsca 17143   ·𝑠 cvsca 17144  TopOpenctopn 17310  0gc0g 17328  β„Homcrrh 32614  sigaGencsigagen 32777  measurescmeas 32834  MblFnMcmbfm 32888  sitgcsitg 32969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-sitg 32970
This theorem is referenced by:  sibff  32976  sibfinima  32979  sibfof  32980  sitgfval  32981  sitgclg  32982
  Copyright terms: Public domain W3C validator