| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfmbl | Structured version Visualization version GIF version | ||
| Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sibfmbl | ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sibfmbl.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 2 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | sitgval.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 6 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 8 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 9 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 34365 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
| 11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
| 12 | 11 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 {csn 4601 ∪ cuni 4883 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 0cc0 11129 +∞cpnf 11266 [,)cico 13364 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 TopOpenctopn 17435 0gc0g 17453 ℝHomcrrh 34024 sigaGencsigagen 34169 measurescmeas 34226 MblFnMcmbfm 34280 sitgcsitg 34361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-sitg 34362 |
| This theorem is referenced by: sibff 34368 sibfinima 34371 sibfof 34372 sitgfval 34373 sitgclg 34374 |
| Copyright terms: Public domain | W3C validator |