![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfmbl | Structured version Visualization version GIF version |
Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | β’ π΅ = (Baseβπ) |
sitgval.j | β’ π½ = (TopOpenβπ) |
sitgval.s | β’ π = (sigaGenβπ½) |
sitgval.0 | β’ 0 = (0gβπ) |
sitgval.x | β’ Β· = ( Β·π βπ) |
sitgval.h | β’ π» = (βHomβ(Scalarβπ)) |
sitgval.1 | β’ (π β π β π) |
sitgval.2 | β’ (π β π β βͺ ran measures) |
sibfmbl.1 | β’ (π β πΉ β dom (πsitgπ)) |
Ref | Expression |
---|---|
sibfmbl | β’ (π β πΉ β (dom πMblFnMπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . 3 β’ (π β πΉ β dom (πsitgπ)) | |
2 | sitgval.b | . . . 4 β’ π΅ = (Baseβπ) | |
3 | sitgval.j | . . . 4 β’ π½ = (TopOpenβπ) | |
4 | sitgval.s | . . . 4 β’ π = (sigaGenβπ½) | |
5 | sitgval.0 | . . . 4 β’ 0 = (0gβπ) | |
6 | sitgval.x | . . . 4 β’ Β· = ( Β·π βπ) | |
7 | sitgval.h | . . . 4 β’ π» = (βHomβ(Scalarβπ)) | |
8 | sitgval.1 | . . . 4 β’ (π β π β π) | |
9 | sitgval.2 | . . . 4 β’ (π β π β βͺ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 33327 | . . 3 β’ (π β (πΉ β dom (πsitgπ) β (πΉ β (dom πMblFnMπ) β§ ran πΉ β Fin β§ βπ₯ β (ran πΉ β { 0 })(πβ(β‘πΉ β {π₯})) β (0[,)+β)))) |
11 | 1, 10 | mpbid 231 | . 2 β’ (π β (πΉ β (dom πMblFnMπ) β§ ran πΉ β Fin β§ βπ₯ β (ran πΉ β { 0 })(πβ(β‘πΉ β {π₯})) β (0[,)+β))) |
12 | 11 | simp1d 1142 | 1 β’ (π β πΉ β (dom πMblFnMπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 β cdif 3945 {csn 4628 βͺ cuni 4908 β‘ccnv 5675 dom cdm 5676 ran crn 5677 β cima 5679 βcfv 6543 (class class class)co 7408 Fincfn 8938 0cc0 11109 +βcpnf 11244 [,)cico 13325 Basecbs 17143 Scalarcsca 17199 Β·π cvsca 17200 TopOpenctopn 17366 0gc0g 17384 βHomcrrh 32968 sigaGencsigagen 33131 measurescmeas 33188 MblFnMcmbfm 33242 sitgcsitg 33323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-sitg 33324 |
This theorem is referenced by: sibff 33330 sibfinima 33333 sibfof 33334 sitgfval 33335 sitgclg 33336 |
Copyright terms: Public domain | W3C validator |