Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Visualization version   GIF version

Theorem sitgfval 31601
Description: Value of the Bochner integral for a simple function 𝐹. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitgfval (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑥,𝑊   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   · (𝑥)   𝐻(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem sitgfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
91, 2, 3, 4, 5, 6, 7, 8sitgval 31592 . 2 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
10 simpr 487 . . . . . 6 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1110rneqd 5810 . . . . 5 ((𝜑𝑓 = 𝐹) → ran 𝑓 = ran 𝐹)
1211difeq1d 4100 . . . 4 ((𝜑𝑓 = 𝐹) → (ran 𝑓 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
1310cnveqd 5748 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1413imaeq1d 5930 . . . . . . 7 ((𝜑𝑓 = 𝐹) → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
1514fveq2d 6676 . . . . . 6 ((𝜑𝑓 = 𝐹) → (𝑀‘(𝑓 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
1615fveq2d 6676 . . . . 5 ((𝜑𝑓 = 𝐹) → (𝐻‘(𝑀‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))))
1716oveq1d 7173 . . . 4 ((𝜑𝑓 = 𝐹) → ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
1812, 17mpteq12dv 5153 . . 3 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)))
1918oveq2d 7174 . 2 ((𝜑𝑓 = 𝐹) → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
20 sibfmbl.1 . . . . 5 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 31595 . . . 4 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 31597 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 31598 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2423ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2521, 22, 24jca32 518 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
26 rneq 5808 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2726eleq1d 2899 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
2826difeq1d 4100 . . . . . 6 (𝑔 = 𝐹 → (ran 𝑔 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
29 cnveq 5746 . . . . . . . . 9 (𝑔 = 𝐹𝑔 = 𝐹)
3029imaeq1d 5930 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 “ {𝑥}) = (𝐹 “ {𝑥}))
3130fveq2d 6676 . . . . . . 7 (𝑔 = 𝐹 → (𝑀‘(𝑔 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
3231eleq1d 2899 . . . . . 6 (𝑔 = 𝐹 → ((𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3328, 32raleqbidv 3403 . . . . 5 (𝑔 = 𝐹 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3427, 33anbi12d 632 . . . 4 (𝑔 = 𝐹 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3534elrab 3682 . . 3 (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3625, 35sylibr 236 . 2 (𝜑𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
37 ovexd 7193 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ V)
389, 19, 36, 37fvmptd 6777 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  {csn 4569   cuni 4840  cmpt 5148  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  cfv 6357  (class class class)co 7158  Fincfn 8511  0cc0 10539  +∞cpnf 10674  [,)cico 12743  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  TopOpenctopn 16697  0gc0g 16715   Σg cgsu 16716  ℝHomcrrh 31236  sigaGencsigagen 31399  measurescmeas 31456  MblFnMcmbfm 31510  sitgcsitg 31589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-sitg 31590
This theorem is referenced by:  sitgclg  31602  sitg0  31606
  Copyright terms: Public domain W3C validator