Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Visualization version   GIF version

Theorem sitgfval 34354
Description: Value of the Bochner integral for a simple function 𝐹. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitgfval (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑥,𝑊   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   · (𝑥)   𝐻(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem sitgfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
91, 2, 3, 4, 5, 6, 7, 8sitgval 34345 . 2 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
10 simpr 484 . . . . . 6 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1110rneqd 5877 . . . . 5 ((𝜑𝑓 = 𝐹) → ran 𝑓 = ran 𝐹)
1211difeq1d 4072 . . . 4 ((𝜑𝑓 = 𝐹) → (ran 𝑓 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
1310cnveqd 5814 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1413imaeq1d 6007 . . . . . . 7 ((𝜑𝑓 = 𝐹) → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
1514fveq2d 6826 . . . . . 6 ((𝜑𝑓 = 𝐹) → (𝑀‘(𝑓 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
1615fveq2d 6826 . . . . 5 ((𝜑𝑓 = 𝐹) → (𝐻‘(𝑀‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))))
1716oveq1d 7361 . . . 4 ((𝜑𝑓 = 𝐹) → ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
1812, 17mpteq12dv 5176 . . 3 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)))
1918oveq2d 7362 . 2 ((𝜑𝑓 = 𝐹) → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
20 sibfmbl.1 . . . . 5 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 34348 . . . 4 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 34350 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 34351 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2423ralrimiva 3124 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2521, 22, 24jca32 515 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
26 rneq 5875 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2726eleq1d 2816 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
2826difeq1d 4072 . . . . . 6 (𝑔 = 𝐹 → (ran 𝑔 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
29 cnveq 5812 . . . . . . . . 9 (𝑔 = 𝐹𝑔 = 𝐹)
3029imaeq1d 6007 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 “ {𝑥}) = (𝐹 “ {𝑥}))
3130fveq2d 6826 . . . . . . 7 (𝑔 = 𝐹 → (𝑀‘(𝑔 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
3231eleq1d 2816 . . . . . 6 (𝑔 = 𝐹 → ((𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3328, 32raleqbidv 3312 . . . . 5 (𝑔 = 𝐹 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3427, 33anbi12d 632 . . . 4 (𝑔 = 𝐹 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3534elrab 3642 . . 3 (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3625, 35sylibr 234 . 2 (𝜑𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
37 ovexd 7381 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ V)
389, 19, 36, 37fvmptd 6936 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  {csn 4573   cuni 4856  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  cfv 6481  (class class class)co 7346  Fincfn 8869  0cc0 11006  +∞cpnf 11143  [,)cico 13247  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  TopOpenctopn 17325  0gc0g 17343   Σg cgsu 17344  ℝHomcrrh 34006  sigaGencsigagen 34151  measurescmeas 34208  MblFnMcmbfm 34262  sitgcsitg 34342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sitg 34343
This theorem is referenced by:  sitgclg  34355  sitg0  34359
  Copyright terms: Public domain W3C validator