Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Visualization version   GIF version

Theorem sitgfval 34339
Description: Value of the Bochner integral for a simple function 𝐹. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitgfval (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑥,𝑊   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   · (𝑥)   𝐻(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem sitgfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
91, 2, 3, 4, 5, 6, 7, 8sitgval 34330 . 2 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
10 simpr 484 . . . . . 6 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1110rneqd 5905 . . . . 5 ((𝜑𝑓 = 𝐹) → ran 𝑓 = ran 𝐹)
1211difeq1d 4091 . . . 4 ((𝜑𝑓 = 𝐹) → (ran 𝑓 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
1310cnveqd 5842 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1413imaeq1d 6033 . . . . . . 7 ((𝜑𝑓 = 𝐹) → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
1514fveq2d 6865 . . . . . 6 ((𝜑𝑓 = 𝐹) → (𝑀‘(𝑓 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
1615fveq2d 6865 . . . . 5 ((𝜑𝑓 = 𝐹) → (𝐻‘(𝑀‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))))
1716oveq1d 7405 . . . 4 ((𝜑𝑓 = 𝐹) → ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
1812, 17mpteq12dv 5197 . . 3 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)))
1918oveq2d 7406 . 2 ((𝜑𝑓 = 𝐹) → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
20 sibfmbl.1 . . . . 5 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 34333 . . . 4 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 34335 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 34336 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2423ralrimiva 3126 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2521, 22, 24jca32 515 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
26 rneq 5903 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2726eleq1d 2814 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
2826difeq1d 4091 . . . . . 6 (𝑔 = 𝐹 → (ran 𝑔 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
29 cnveq 5840 . . . . . . . . 9 (𝑔 = 𝐹𝑔 = 𝐹)
3029imaeq1d 6033 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 “ {𝑥}) = (𝐹 “ {𝑥}))
3130fveq2d 6865 . . . . . . 7 (𝑔 = 𝐹 → (𝑀‘(𝑔 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
3231eleq1d 2814 . . . . . 6 (𝑔 = 𝐹 → ((𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3328, 32raleqbidv 3321 . . . . 5 (𝑔 = 𝐹 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3427, 33anbi12d 632 . . . 4 (𝑔 = 𝐹 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3534elrab 3662 . . 3 (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3625, 35sylibr 234 . 2 (𝜑𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
37 ovexd 7425 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ V)
389, 19, 36, 37fvmptd 6978 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  +∞cpnf 11212  [,)cico 13315  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  TopOpenctopn 17391  0gc0g 17409   Σg cgsu 17410  ℝHomcrrh 33990  sigaGencsigagen 34135  measurescmeas 34192  MblFnMcmbfm 34246  sitgcsitg 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-sitg 34328
This theorem is referenced by:  sitgclg  34340  sitg0  34344
  Copyright terms: Public domain W3C validator