Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Visualization version   GIF version

Theorem sitgfval 30734
Description: Value of the Bochner integral for a simple function 𝐹. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitgfval (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑥,𝑊   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   · (𝑥)   𝐻(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem sitgfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
91, 2, 3, 4, 5, 6, 7, 8sitgval 30725 . 2 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
10 simpr 473 . . . . . 6 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1110rneqd 5561 . . . . 5 ((𝜑𝑓 = 𝐹) → ran 𝑓 = ran 𝐹)
1211difeq1d 3933 . . . 4 ((𝜑𝑓 = 𝐹) → (ran 𝑓 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
1310cnveqd 5506 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1413imaeq1d 5682 . . . . . . 7 ((𝜑𝑓 = 𝐹) → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
1514fveq2d 6415 . . . . . 6 ((𝜑𝑓 = 𝐹) → (𝑀‘(𝑓 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
1615fveq2d 6415 . . . . 5 ((𝜑𝑓 = 𝐹) → (𝐻‘(𝑀‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))))
1716oveq1d 6892 . . . 4 ((𝜑𝑓 = 𝐹) → ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
1812, 17mpteq12dv 4934 . . 3 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)))
1918oveq2d 6893 . 2 ((𝜑𝑓 = 𝐹) → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
20 sibfmbl.1 . . . . 5 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 30728 . . . 4 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 30730 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 30731 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2423ralrimiva 3161 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2521, 22, 24jca32 507 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
26 rneq 5559 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2726eleq1d 2877 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
2826difeq1d 3933 . . . . . 6 (𝑔 = 𝐹 → (ran 𝑔 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
29 cnveq 5504 . . . . . . . . 9 (𝑔 = 𝐹𝑔 = 𝐹)
3029imaeq1d 5682 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 “ {𝑥}) = (𝐹 “ {𝑥}))
3130fveq2d 6415 . . . . . . 7 (𝑔 = 𝐹 → (𝑀‘(𝑔 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
3231eleq1d 2877 . . . . . 6 (𝑔 = 𝐹 → ((𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3328, 32raleqbidv 3348 . . . . 5 (𝑔 = 𝐹 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3427, 33anbi12d 618 . . . 4 (𝑔 = 𝐹 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3534elrab 3566 . . 3 (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3625, 35sylibr 225 . 2 (𝜑𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
37 ovexd 6911 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ V)
389, 19, 36, 37fvmptd 6512 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wral 3103  {crab 3107  Vcvv 3398  cdif 3773  {csn 4377   cuni 4637  cmpt 4930  ccnv 5317  dom cdm 5318  ran crn 5319  cima 5321  cfv 6104  (class class class)co 6877  Fincfn 8195  0cc0 10224  +∞cpnf 10359  [,)cico 12398  Basecbs 16071  Scalarcsca 16159   ·𝑠 cvsca 16160  TopOpenctopn 16290  0gc0g 16308   Σg cgsu 16309  ℝHomcrrh 30368  sigaGencsigagen 30532  measurescmeas 30589  MblFnMcmbfm 30643  sitgcsitg 30722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-sitg 30723
This theorem is referenced by:  sitgclg  30735  sitg0  30739
  Copyright terms: Public domain W3C validator