Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Visualization version   GIF version

Theorem sitgfval 32414
Description: Value of the Bochner integral for a simple function 𝐹. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitgfval (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑥,𝑊   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   · (𝑥)   𝐻(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem sitgfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
91, 2, 3, 4, 5, 6, 7, 8sitgval 32405 . 2 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
10 simpr 485 . . . . . 6 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1110rneqd 5864 . . . . 5 ((𝜑𝑓 = 𝐹) → ran 𝑓 = ran 𝐹)
1211difeq1d 4066 . . . 4 ((𝜑𝑓 = 𝐹) → (ran 𝑓 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
1310cnveqd 5802 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑓 = 𝐹)
1413imaeq1d 5983 . . . . . . 7 ((𝜑𝑓 = 𝐹) → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
1514fveq2d 6813 . . . . . 6 ((𝜑𝑓 = 𝐹) → (𝑀‘(𝑓 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
1615fveq2d 6813 . . . . 5 ((𝜑𝑓 = 𝐹) → (𝐻‘(𝑀‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))))
1716oveq1d 7328 . . . 4 ((𝜑𝑓 = 𝐹) → ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
1812, 17mpteq12dv 5176 . . 3 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)))
1918oveq2d 7329 . 2 ((𝜑𝑓 = 𝐹) → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
20 sibfmbl.1 . . . . 5 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 32408 . . . 4 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 32410 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 32411 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2423ralrimiva 3140 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
2521, 22, 24jca32 516 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
26 rneq 5862 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2726eleq1d 2822 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
2826difeq1d 4066 . . . . . 6 (𝑔 = 𝐹 → (ran 𝑔 ∖ { 0 }) = (ran 𝐹 ∖ { 0 }))
29 cnveq 5800 . . . . . . . . 9 (𝑔 = 𝐹𝑔 = 𝐹)
3029imaeq1d 5983 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 “ {𝑥}) = (𝐹 “ {𝑥}))
3130fveq2d 6813 . . . . . . 7 (𝑔 = 𝐹 → (𝑀‘(𝑔 “ {𝑥})) = (𝑀‘(𝐹 “ {𝑥})))
3231eleq1d 2822 . . . . . 6 (𝑔 = 𝐹 → ((𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3328, 32raleqbidv 3316 . . . . 5 (𝑔 = 𝐹 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
3427, 33anbi12d 631 . . . 4 (𝑔 = 𝐹 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3534elrab 3633 . . 3 (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
3625, 35sylibr 233 . 2 (𝜑𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
37 ovexd 7348 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ V)
389, 19, 36, 37fvmptd 6919 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  {crab 3404  Vcvv 3441  cdif 3893  {csn 4569   cuni 4848  cmpt 5168  ccnv 5604  dom cdm 5605  ran crn 5606  cima 5608  cfv 6463  (class class class)co 7313  Fincfn 8779  0cc0 10941  +∞cpnf 11076  [,)cico 13151  Basecbs 16979  Scalarcsca 17032   ·𝑠 cvsca 17033  TopOpenctopn 17199  0gc0g 17217   Σg cgsu 17218  ℝHomcrrh 32049  sigaGencsigagen 32212  measurescmeas 32269  MblFnMcmbfm 32323  sitgcsitg 32402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-sitg 32403
This theorem is referenced by:  sitgclg  32415  sitg0  32419
  Copyright terms: Public domain W3C validator