| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfrn | Structured version Visualization version GIF version | ||
| Description: A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sibfrn | ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sibfmbl.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 2 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | sitgval.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 6 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 8 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 9 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 34336 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
| 11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
| 12 | 11 | simp2d 1143 | 1 ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∖ cdif 3897 {csn 4574 ∪ cuni 4857 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 0cc0 10998 +∞cpnf 11135 [,)cico 13239 Basecbs 17112 Scalarcsca 17156 ·𝑠 cvsca 17157 TopOpenctopn 17317 0gc0g 17335 ℝHomcrrh 33996 sigaGencsigagen 34141 measurescmeas 34198 MblFnMcmbfm 34252 sitgcsitg 34332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-sitg 34333 |
| This theorem is referenced by: sibfof 34343 sitgfval 34344 sitgclg 34345 |
| Copyright terms: Public domain | W3C validator |