| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfrn | Structured version Visualization version GIF version | ||
| Description: A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sibfrn | ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sibfmbl.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 2 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | sitgval.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 6 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 8 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 9 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 34370 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
| 11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
| 12 | 11 | simp2d 1143 | 1 ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∖ cdif 3928 {csn 4606 ∪ cuni 4888 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 0cc0 11134 +∞cpnf 11271 [,)cico 13369 Basecbs 17233 Scalarcsca 17279 ·𝑠 cvsca 17280 TopOpenctopn 17440 0gc0g 17458 ℝHomcrrh 34029 sigaGencsigagen 34174 measurescmeas 34231 MblFnMcmbfm 34285 sitgcsitg 34366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-sitg 34367 |
| This theorem is referenced by: sibfof 34377 sitgfval 34378 sitgclg 34379 |
| Copyright terms: Public domain | W3C validator |