Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfrn | Structured version Visualization version GIF version |
Description: A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibfrn | ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
2 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 32200 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
11 | 1, 10 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
12 | 11 | simp2d 1141 | 1 ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 {csn 4558 ∪ cuni 4836 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 0cc0 10802 +∞cpnf 10937 [,)cico 13010 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 TopOpenctopn 17049 0gc0g 17067 ℝHomcrrh 31843 sigaGencsigagen 32006 measurescmeas 32063 MblFnMcmbfm 32117 sitgcsitg 32196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sitg 32197 |
This theorem is referenced by: sibfof 32207 sitgfval 32208 sitgclg 32209 |
Copyright terms: Public domain | W3C validator |