Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfrn Structured version   Visualization version   GIF version

Theorem sibfrn 34319
Description: A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfrn (𝜑 → ran 𝐹 ∈ Fin)

Proof of Theorem sibfrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . 4 𝐵 = (Base‘𝑊)
3 sitgval.j . . . 4 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . 4 0 = (0g𝑊)
6 sitgval.x . . . 4 · = ( ·𝑠𝑊)
7 sitgval.h . . . 4 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . 4 (𝜑𝑊𝑉)
9 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 34315 . . 3 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 232 . 2 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp2d 1142 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cdif 3960  {csn 4631   cuni 4912  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  +∞cpnf 11290  [,)cico 13386  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  TopOpenctopn 17468  0gc0g 17486  ℝHomcrrh 33956  sigaGencsigagen 34119  measurescmeas 34176  MblFnMcmbfm 34230  sitgcsitg 34311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sitg 34312
This theorem is referenced by:  sibfof  34322  sitgfval  34323  sitgclg  34324
  Copyright terms: Public domain W3C validator