Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfrn Structured version   Visualization version   GIF version

Theorem sibfrn 34340
Description: A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfrn (𝜑 → ran 𝐹 ∈ Fin)

Proof of Theorem sibfrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . 4 𝐵 = (Base‘𝑊)
3 sitgval.j . . . 4 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . 4 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . 4 0 = (0g𝑊)
6 sitgval.x . . . 4 · = ( ·𝑠𝑊)
7 sitgval.h . . . 4 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . 4 (𝜑𝑊𝑉)
9 sitgval.2 . . . 4 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 34336 . . 3 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 232 . 2 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp2d 1143 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110  wral 3045  cdif 3897  {csn 4574   cuni 4857  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  cfv 6477  (class class class)co 7341  Fincfn 8864  0cc0 10998  +∞cpnf 11135  [,)cico 13239  Basecbs 17112  Scalarcsca 17156   ·𝑠 cvsca 17157  TopOpenctopn 17317  0gc0g 17335  ℝHomcrrh 33996  sigaGencsigagen 34141  measurescmeas 34198  MblFnMcmbfm 34252  sitgcsitg 34332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-sitg 34333
This theorem is referenced by:  sibfof  34343  sitgfval  34344  sitgclg  34345
  Copyright terms: Public domain W3C validator