Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfima Structured version   Visualization version   GIF version

Theorem sibfima 32354
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfima ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))

Proof of Theorem sibfima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . . 4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . . 5 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . 5 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . 5 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . 5 0 = (0g𝑊)
6 sitgval.x . . . . 5 · = ( ·𝑠𝑊)
7 sitgval.h . . . . 5 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . 5 (𝜑𝑊𝑉)
9 sitgval.2 . . . . 5 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 32349 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 231 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp3d 1144 . 2 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
13 sneq 4575 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1413imaeq2d 5979 . . . . 5 (𝑥 = 𝐴 → (𝐹 “ {𝑥}) = (𝐹 “ {𝐴}))
1514fveq2d 6808 . . . 4 (𝑥 = 𝐴 → (𝑀‘(𝐹 “ {𝑥})) = (𝑀‘(𝐹 “ {𝐴})))
1615eleq1d 2821 . . 3 (𝑥 = 𝐴 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1716rspcv 3562 . 2 (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1812, 17mpan9 508 1 ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  cdif 3889  {csn 4565   cuni 4844  ccnv 5599  dom cdm 5600  ran crn 5601  cima 5603  cfv 6458  (class class class)co 7307  Fincfn 8764  0cc0 10921  +∞cpnf 11056  [,)cico 13131  Basecbs 16961  Scalarcsca 17014   ·𝑠 cvsca 17015  TopOpenctopn 17181  0gc0g 17199  ℝHomcrrh 31992  sigaGencsigagen 32155  measurescmeas 32212  MblFnMcmbfm 32266  sitgcsitg 32345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-sitg 32346
This theorem is referenced by:  sibfinima  32355  sitgfval  32357  sitgclg  32358
  Copyright terms: Public domain W3C validator