Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfima Structured version   Visualization version   GIF version

Theorem sibfima 34128
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfima ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))

Proof of Theorem sibfima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . . 4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . . 5 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . 5 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . 5 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . 5 0 = (0g𝑊)
6 sitgval.x . . . . 5 · = ( ·𝑠𝑊)
7 sitgval.h . . . . 5 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . 5 (𝜑𝑊𝑉)
9 sitgval.2 . . . . 5 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 34123 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 231 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp3d 1141 . 2 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
13 sneq 4642 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1413imaeq2d 6068 . . . . 5 (𝑥 = 𝐴 → (𝐹 “ {𝑥}) = (𝐹 “ {𝐴}))
1514fveq2d 6904 . . . 4 (𝑥 = 𝐴 → (𝑀‘(𝐹 “ {𝑥})) = (𝑀‘(𝐹 “ {𝐴})))
1615eleq1d 2810 . . 3 (𝑥 = 𝐴 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1716rspcv 3603 . 2 (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1812, 17mpan9 505 1 ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  cdif 3943  {csn 4632   cuni 4912  ccnv 5680  dom cdm 5681  ran crn 5682  cima 5684  cfv 6553  (class class class)co 7423  Fincfn 8973  0cc0 11154  +∞cpnf 11291  [,)cico 13375  Basecbs 17208  Scalarcsca 17264   ·𝑠 cvsca 17265  TopOpenctopn 17431  0gc0g 17449  ℝHomcrrh 33764  sigaGencsigagen 33927  measurescmeas 33984  MblFnMcmbfm 34038  sitgcsitg 34119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-sitg 34120
This theorem is referenced by:  sibfinima  34129  sitgfval  34131  sitgclg  34132
  Copyright terms: Public domain W3C validator