Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfima | Structured version Visualization version GIF version |
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibfima | ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
2 | sitgval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . . 5 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . . 5 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 31883 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
11 | 1, 10 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
12 | 11 | simp3d 1145 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)) |
13 | sneq 4536 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
14 | 13 | imaeq2d 5913 | . . . . 5 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝐴})) |
15 | 14 | fveq2d 6691 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑀‘(◡𝐹 “ {𝑥})) = (𝑀‘(◡𝐹 “ {𝐴}))) |
16 | 15 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
17 | 16 | rspcv 3524 | . 2 ⊢ (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
18 | 12, 17 | mpan9 510 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∖ cdif 3850 {csn 4526 ∪ cuni 4806 ◡ccnv 5534 dom cdm 5535 ran crn 5536 “ cima 5538 ‘cfv 6350 (class class class)co 7183 Fincfn 8568 0cc0 10628 +∞cpnf 10763 [,)cico 12836 Basecbs 16599 Scalarcsca 16684 ·𝑠 cvsca 16685 TopOpenctopn 16811 0gc0g 16829 ℝHomcrrh 31526 sigaGencsigagen 31689 measurescmeas 31746 MblFnMcmbfm 31800 sitgcsitg 31879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-ov 7186 df-oprab 7187 df-mpo 7188 df-sitg 31880 |
This theorem is referenced by: sibfinima 31889 sitgfval 31891 sitgclg 31892 |
Copyright terms: Public domain | W3C validator |