![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfima | Structured version Visualization version GIF version |
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibfima | ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
2 | sitgval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . . 5 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . . 5 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 34123 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
11 | 1, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
12 | 11 | simp3d 1141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)) |
13 | sneq 4642 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
14 | 13 | imaeq2d 6068 | . . . . 5 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝐴})) |
15 | 14 | fveq2d 6904 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑀‘(◡𝐹 “ {𝑥})) = (𝑀‘(◡𝐹 “ {𝐴}))) |
16 | 15 | eleq1d 2810 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
17 | 16 | rspcv 3603 | . 2 ⊢ (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
18 | 12, 17 | mpan9 505 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∖ cdif 3943 {csn 4632 ∪ cuni 4912 ◡ccnv 5680 dom cdm 5681 ran crn 5682 “ cima 5684 ‘cfv 6553 (class class class)co 7423 Fincfn 8973 0cc0 11154 +∞cpnf 11291 [,)cico 13375 Basecbs 17208 Scalarcsca 17264 ·𝑠 cvsca 17265 TopOpenctopn 17431 0gc0g 17449 ℝHomcrrh 33764 sigaGencsigagen 33927 measurescmeas 33984 MblFnMcmbfm 34038 sitgcsitg 34119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-sitg 34120 |
This theorem is referenced by: sibfinima 34129 sitgfval 34131 sitgclg 34132 |
Copyright terms: Public domain | W3C validator |