Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfima | Structured version Visualization version GIF version |
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibfima | ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
2 | sitgval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . . 5 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . . 5 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 32279 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
11 | 1, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
12 | 11 | simp3d 1142 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)) |
13 | sneq 4576 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
14 | 13 | imaeq2d 5966 | . . . . 5 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝐴})) |
15 | 14 | fveq2d 6772 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑀‘(◡𝐹 “ {𝑥})) = (𝑀‘(◡𝐹 “ {𝐴}))) |
16 | 15 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
17 | 16 | rspcv 3555 | . 2 ⊢ (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
18 | 12, 17 | mpan9 506 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∖ cdif 3888 {csn 4566 ∪ cuni 4844 ◡ccnv 5587 dom cdm 5588 ran crn 5589 “ cima 5591 ‘cfv 6430 (class class class)co 7268 Fincfn 8707 0cc0 10855 +∞cpnf 10990 [,)cico 13063 Basecbs 16893 Scalarcsca 16946 ·𝑠 cvsca 16947 TopOpenctopn 17113 0gc0g 17131 ℝHomcrrh 31922 sigaGencsigagen 32085 measurescmeas 32142 MblFnMcmbfm 32196 sitgcsitg 32275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-sitg 32276 |
This theorem is referenced by: sibfinima 32285 sitgfval 32287 sitgclg 32288 |
Copyright terms: Public domain | W3C validator |