Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfima Structured version   Visualization version   GIF version

Theorem sibfima 31600
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfima ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))

Proof of Theorem sibfima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . . 4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . . 5 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . 5 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . 5 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . 5 0 = (0g𝑊)
6 sitgval.x . . . . 5 · = ( ·𝑠𝑊)
7 sitgval.h . . . . 5 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . 5 (𝜑𝑊𝑉)
9 sitgval.2 . . . . 5 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 31595 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 234 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp3d 1140 . 2 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
13 sneq 4580 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1413imaeq2d 5932 . . . . 5 (𝑥 = 𝐴 → (𝐹 “ {𝑥}) = (𝐹 “ {𝐴}))
1514fveq2d 6677 . . . 4 (𝑥 = 𝐴 → (𝑀‘(𝐹 “ {𝑥})) = (𝑀‘(𝐹 “ {𝐴})))
1615eleq1d 2900 . . 3 (𝑥 = 𝐴 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1716rspcv 3621 . 2 (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1812, 17mpan9 509 1 ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  cdif 3936  {csn 4570   cuni 4841  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561  cfv 6358  (class class class)co 7159  Fincfn 8512  0cc0 10540  +∞cpnf 10675  [,)cico 12743  Basecbs 16486  Scalarcsca 16571   ·𝑠 cvsca 16572  TopOpenctopn 16698  0gc0g 16716  ℝHomcrrh 31238  sigaGencsigagen 31401  measurescmeas 31458  MblFnMcmbfm 31512  sitgcsitg 31591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-sitg 31592
This theorem is referenced by:  sibfinima  31601  sitgfval  31603  sitgclg  31604
  Copyright terms: Public domain W3C validator