![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfima | Structured version Visualization version GIF version |
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibfima | ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
2 | sitgval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . . 5 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . . 5 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 34298 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
11 | 1, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
12 | 11 | simp3d 1144 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)) |
13 | sneq 4658 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
14 | 13 | imaeq2d 6089 | . . . . 5 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝐴})) |
15 | 14 | fveq2d 6924 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑀‘(◡𝐹 “ {𝑥})) = (𝑀‘(◡𝐹 “ {𝐴}))) |
16 | 15 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
17 | 16 | rspcv 3631 | . 2 ⊢ (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞))) |
18 | 12, 17 | mpan9 506 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 {csn 4648 ∪ cuni 4931 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 +∞cpnf 11321 [,)cico 13409 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 TopOpenctopn 17481 0gc0g 17499 ℝHomcrrh 33939 sigaGencsigagen 34102 measurescmeas 34159 MblFnMcmbfm 34213 sitgcsitg 34294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sitg 34295 |
This theorem is referenced by: sibfinima 34304 sitgfval 34306 sitgclg 34307 |
Copyright terms: Public domain | W3C validator |