Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfima Structured version   Visualization version   GIF version

Theorem sibfima 32284
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sibfima ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))

Proof of Theorem sibfima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . . 4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2 sitgval.b . . . . 5 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . 5 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . 5 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . 5 0 = (0g𝑊)
6 sitgval.x . . . . 5 · = ( ·𝑠𝑊)
7 sitgval.h . . . . 5 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . 5 (𝜑𝑊𝑉)
9 sitgval.2 . . . . 5 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9issibf 32279 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
111, 10mpbid 231 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞)))
1211simp3d 1142 . 2 (𝜑 → ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
13 sneq 4576 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1413imaeq2d 5966 . . . . 5 (𝑥 = 𝐴 → (𝐹 “ {𝑥}) = (𝐹 “ {𝐴}))
1514fveq2d 6772 . . . 4 (𝑥 = 𝐴 → (𝑀‘(𝐹 “ {𝑥})) = (𝑀‘(𝐹 “ {𝐴})))
1615eleq1d 2824 . . 3 (𝑥 = 𝐴 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1716rspcv 3555 . 2 (𝐴 ∈ (ran 𝐹 ∖ { 0 }) → (∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞)))
1812, 17mpan9 506 1 ((𝜑𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝐴})) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  cdif 3888  {csn 4566   cuni 4844  ccnv 5587  dom cdm 5588  ran crn 5589  cima 5591  cfv 6430  (class class class)co 7268  Fincfn 8707  0cc0 10855  +∞cpnf 10990  [,)cico 13063  Basecbs 16893  Scalarcsca 16946   ·𝑠 cvsca 16947  TopOpenctopn 17113  0gc0g 17131  ℝHomcrrh 31922  sigaGencsigagen 32085  measurescmeas 32142  MblFnMcmbfm 32196  sitgcsitg 32275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-sitg 32276
This theorem is referenced by:  sibfinima  32285  sitgfval  32287  sitgclg  32288
  Copyright terms: Public domain W3C validator