MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemA Structured version   Visualization version   GIF version

Theorem psgndiflemA 21517
Description: Lemma 2 for psgndif 21518. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemA (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemA
Dummy variables 𝑤 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
21eqeq1d 2732 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((♯‘𝑤) = (♯‘𝑟) ↔ (♯‘𝑊) = (♯‘𝑟)))
31oveq2d 7406 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
4 fveq1 6860 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
54fveq1d 6863 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
65eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
76ralbidv 3157 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
87anbi2d 630 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ (((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
93, 8raleqbidv 3321 . . . . . . . . . . 11 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
102, 9anbi12d 632 . . . . . . . . . 10 (𝑤 = 𝑊 → (((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1110rexbidv 3158 . . . . . . . . 9 (𝑤 = 𝑊 → (∃𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1211rspccv 3588 . . . . . . . 8 (∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (𝑊 ∈ Word 𝑇 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
13 psgnfix.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
14 psgnfix.r . . . . . . . . 9 𝑅 = ran (pmTrsp‘𝑁)
1513, 14pmtrdifwrdel2 19423 . . . . . . . 8 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
1612, 15syl11 33 . . . . . . 7 (𝑊 ∈ Word 𝑇 → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
17163ad2ant1 1133 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1817com12 32 . . . . 5 (𝐾𝑁 → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1918ad2antlr 727 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
2019imp 406 . . 3 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
21 oveq2 7398 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑟) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
2221adantr 480 . . . . . . . 8 (((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
2322ad3antlr 731 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
24 psgnfix.z . . . . . . . 8 𝑍 = (SymGrp‘𝑁)
25 simplll 774 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → 𝑁 ∈ Fin)
2625ad2antlr 727 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑁 ∈ Fin)
27 simplll 774 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑟 ∈ Word 𝑅)
28 simprr3 1224 . . . . . . . . 9 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → 𝑈 ∈ Word 𝑅)
2928adantr 480 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑈 ∈ Word 𝑅)
30 simplrl 776 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
31 3simpa 1148 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3231adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3332ad2antlr 727 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
34 simplrl 776 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (♯‘𝑊) = (♯‘𝑟))
3534adantr 480 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (♯‘𝑊) = (♯‘𝑟))
36 simplrr 777 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
3736adantr 480 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
38 psgnfix.p . . . . . . . . . . . . 13 𝑃 = (Base‘(SymGrp‘𝑁))
39 psgnfix.s . . . . . . . . . . . . 13 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
4038, 13, 39, 24, 14psgndiflemB 21516 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑟))))
4140imp31 417 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑟))
4241eqcomd 2736 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → (𝑍 Σg 𝑟) = 𝑄)
4330, 33, 27, 35, 37, 42syl23anc 1379 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = 𝑄)
44 id 22 . . . . . . . . . . 11 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑈))
4524eqcomi 2739 . . . . . . . . . . . 12 (SymGrp‘𝑁) = 𝑍
4645oveq1i 7400 . . . . . . . . . . 11 ((SymGrp‘𝑁) Σg 𝑈) = (𝑍 Σg 𝑈)
4744, 46eqtrdi 2781 . . . . . . . . . 10 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = (𝑍 Σg 𝑈))
4847adantl 481 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑄 = (𝑍 Σg 𝑈))
4943, 48eqtrd 2765 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = (𝑍 Σg 𝑈))
5024, 14, 26, 27, 29, 49psgnuni 19436 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑈)))
5123, 50eqtrd 2765 . . . . . 6 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))
5251ex 412 . . . . 5 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))
5352ex 412 . . . 4 ((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
5453rexlimiva 3127 . . 3 (∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
5520, 54mpcom 38 . 2 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))
5655ex 412 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cdif 3914  {csn 4592  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076  -cneg 11413  ..^cfzo 13622  cexp 14033  chash 14302  Word cword 14485  Basecbs 17186   Σg cgsu 17410  SymGrpcsymg 19306  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-ghm 19152  df-gim 19198  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428
This theorem is referenced by:  psgndif  21518
  Copyright terms: Public domain W3C validator