MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemA Structured version   Visualization version   GIF version

Theorem psgndiflemA 21153
Description: Lemma 2 for psgndif 21154. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Baseβ€˜(SymGrpβ€˜π‘))
psgnfix.t 𝑇 = ran (pmTrspβ€˜(𝑁 βˆ– {𝐾}))
psgnfix.s 𝑆 = (SymGrpβ€˜(𝑁 βˆ– {𝐾}))
psgnfix.z 𝑍 = (SymGrpβ€˜π‘)
psgnfix.r 𝑅 = ran (pmTrspβ€˜π‘)
Assertion
Ref Expression
psgndiflemA (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) β†’ ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅) β†’ (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ)))))
Distinct variable groups:   𝐾,π‘ž   𝑃,π‘ž   𝑄,π‘ž
Allowed substitution hints:   𝑅(π‘ž)   𝑆(π‘ž)   𝑇(π‘ž)   π‘ˆ(π‘ž)   𝑁(π‘ž)   π‘Š(π‘ž)   𝑍(π‘ž)

Proof of Theorem psgndiflemA
Dummy variables 𝑀 𝑖 𝑛 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ (β™―β€˜π‘€) = (β™―β€˜π‘Š))
21eqeq1d 2734 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ ((β™―β€˜π‘€) = (β™―β€˜π‘Ÿ) ↔ (β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ)))
31oveq2d 7424 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ (0..^(β™―β€˜π‘€)) = (0..^(β™―β€˜π‘Š)))
4 fveq1 6890 . . . . . . . . . . . . . . . 16 (𝑀 = π‘Š β†’ (π‘€β€˜π‘–) = (π‘Šβ€˜π‘–))
54fveq1d 6893 . . . . . . . . . . . . . . 15 (𝑀 = π‘Š β†’ ((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Šβ€˜π‘–)β€˜π‘›))
65eqeq1d 2734 . . . . . . . . . . . . . 14 (𝑀 = π‘Š β†’ (((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›) ↔ ((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))
76ralbidv 3177 . . . . . . . . . . . . 13 (𝑀 = π‘Š β†’ (βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›) ↔ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))
87anbi2d 629 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ ((((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)) ↔ (((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))))
93, 8raleqbidv 3342 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘€))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)) ↔ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))))
102, 9anbi12d 631 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (((β™―β€˜π‘€) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘€))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))) ↔ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
1110rexbidv 3178 . . . . . . . . 9 (𝑀 = π‘Š β†’ (βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘€) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘€))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))) ↔ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
1211rspccv 3609 . . . . . . . 8 (βˆ€π‘€ ∈ Word π‘‡βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘€) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘€))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))) β†’ (π‘Š ∈ Word 𝑇 β†’ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
13 psgnfix.t . . . . . . . . 9 𝑇 = ran (pmTrspβ€˜(𝑁 βˆ– {𝐾}))
14 psgnfix.r . . . . . . . . 9 𝑅 = ran (pmTrspβ€˜π‘)
1513, 14pmtrdifwrdel2 19353 . . . . . . . 8 (𝐾 ∈ 𝑁 β†’ βˆ€π‘€ ∈ Word π‘‡βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘€) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘€))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘€β€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))))
1612, 15syl11 33 . . . . . . 7 (π‘Š ∈ Word 𝑇 β†’ (𝐾 ∈ 𝑁 β†’ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
17163ad2ant1 1133 . . . . . 6 ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅) β†’ (𝐾 ∈ 𝑁 β†’ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
1817com12 32 . . . . 5 (𝐾 ∈ 𝑁 β†’ ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅) β†’ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
1918ad2antlr 725 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) β†’ ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅) β†’ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))))
2019imp 407 . . 3 ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅)) β†’ βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))))
21 oveq2 7416 . . . . . . . . 9 ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘Ÿ)))
2221adantr 481 . . . . . . . 8 (((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘Ÿ)))
2322ad3antlr 729 . . . . . . 7 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘Ÿ)))
24 psgnfix.z . . . . . . . 8 𝑍 = (SymGrpβ€˜π‘)
25 simplll 773 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅)) β†’ 𝑁 ∈ Fin)
2625ad2antlr 725 . . . . . . . 8 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ 𝑁 ∈ Fin)
27 simplll 773 . . . . . . . 8 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ π‘Ÿ ∈ Word 𝑅)
28 simprr3 1223 . . . . . . . . 9 (((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) β†’ π‘ˆ ∈ Word 𝑅)
2928adantr 481 . . . . . . . 8 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ π‘ˆ ∈ Word 𝑅)
30 simplrl 775 . . . . . . . . . 10 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}))
31 3simpa 1148 . . . . . . . . . . . 12 ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅) β†’ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š)))
3231adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅)) β†’ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š)))
3332ad2antlr 725 . . . . . . . . . 10 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š)))
34 simplrl 775 . . . . . . . . . . 11 (((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) β†’ (β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ))
3534adantr 481 . . . . . . . . . 10 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ))
36 simplrr 776 . . . . . . . . . . 11 (((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))
3736adantr 481 . . . . . . . . . 10 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))
38 psgnfix.p . . . . . . . . . . . . 13 𝑃 = (Baseβ€˜(SymGrpβ€˜π‘))
39 psgnfix.s . . . . . . . . . . . . 13 𝑆 = (SymGrpβ€˜(𝑁 βˆ– {𝐾}))
4038, 13, 39, 24, 14psgndiflemB 21152 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) β†’ ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š)) β†’ ((π‘Ÿ ∈ Word 𝑅 ∧ (β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))) β†’ 𝑄 = (𝑍 Ξ£g π‘Ÿ))))
4140imp31 418 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š))) ∧ (π‘Ÿ ∈ Word 𝑅 ∧ (β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) β†’ 𝑄 = (𝑍 Ξ£g π‘Ÿ))
4241eqcomd 2738 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š))) ∧ (π‘Ÿ ∈ Word 𝑅 ∧ (β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) β†’ (𝑍 Ξ£g π‘Ÿ) = 𝑄)
4330, 33, 27, 35, 37, 42syl23anc 1377 . . . . . . . . 9 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (𝑍 Ξ£g π‘Ÿ) = 𝑄)
44 id 22 . . . . . . . . . . 11 (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ))
4524eqcomi 2741 . . . . . . . . . . . 12 (SymGrpβ€˜π‘) = 𝑍
4645oveq1i 7418 . . . . . . . . . . 11 ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) = (𝑍 Ξ£g π‘ˆ)
4744, 46eqtrdi 2788 . . . . . . . . . 10 (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ 𝑄 = (𝑍 Ξ£g π‘ˆ))
4847adantl 482 . . . . . . . . 9 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ 𝑄 = (𝑍 Ξ£g π‘ˆ))
4943, 48eqtrd 2772 . . . . . . . 8 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (𝑍 Ξ£g π‘Ÿ) = (𝑍 Ξ£g π‘ˆ))
5024, 14, 26, 27, 29, 49psgnuni 19366 . . . . . . 7 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (-1↑(β™―β€˜π‘Ÿ)) = (-1↑(β™―β€˜π‘ˆ)))
5123, 50eqtrd 2772 . . . . . 6 ((((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ)) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ)))
5251ex 413 . . . . 5 (((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅))) β†’ (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ))))
5352ex 413 . . . 4 ((π‘Ÿ ∈ Word 𝑅 ∧ ((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›)))) β†’ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅)) β†’ (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ)))))
5453rexlimiva 3147 . . 3 (βˆƒπ‘Ÿ ∈ Word 𝑅((β™―β€˜π‘Š) = (β™―β€˜π‘Ÿ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘Š))(((π‘Ÿβ€˜π‘–)β€˜πΎ) = 𝐾 ∧ βˆ€π‘› ∈ (𝑁 βˆ– {𝐾})((π‘Šβ€˜π‘–)β€˜π‘›) = ((π‘Ÿβ€˜π‘–)β€˜π‘›))) β†’ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅)) β†’ (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ)))))
5520, 54mpcom 38 . 2 ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) ∧ (π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅)) β†’ (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ))))
5655ex 413 1 (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {π‘ž ∈ 𝑃 ∣ (π‘žβ€˜πΎ) = 𝐾}) β†’ ((π‘Š ∈ Word 𝑇 ∧ (𝑄 β†Ύ (𝑁 βˆ– {𝐾})) = (𝑆 Ξ£g π‘Š) ∧ π‘ˆ ∈ Word 𝑅) β†’ (𝑄 = ((SymGrpβ€˜π‘) Ξ£g π‘ˆ) β†’ (-1↑(β™―β€˜π‘Š)) = (-1↑(β™―β€˜π‘ˆ)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945  {csn 4628  ran crn 5677   β†Ύ cres 5678  β€˜cfv 6543  (class class class)co 7408  Fincfn 8938  0cc0 11109  1c1 11110  -cneg 11444  ..^cfzo 13626  β†‘cexp 14026  β™―chash 14289  Word cword 14463  Basecbs 17143   Ξ£g cgsu 17385  SymGrpcsymg 19233  pmTrspcpmtr 19308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-word 14464  df-lsw 14512  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-splice 14699  df-reverse 14708  df-s2 14798  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-0g 17386  df-gsum 17387  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-submnd 18671  df-efmnd 18749  df-grp 18821  df-minusg 18822  df-subg 19002  df-ghm 19089  df-gim 19132  df-oppg 19209  df-symg 19234  df-pmtr 19309  df-psgn 19358
This theorem is referenced by:  psgndif  21154
  Copyright terms: Public domain W3C validator