MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemA Structured version   Visualization version   GIF version

Theorem psgndiflemA 20366
Description: Lemma 2 for psgndif 20367. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemA (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemA
Dummy variables 𝑤 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6658 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
21eqeq1d 2760 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((♯‘𝑤) = (♯‘𝑟) ↔ (♯‘𝑊) = (♯‘𝑟)))
31oveq2d 7166 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
4 fveq1 6657 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
54fveq1d 6660 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
65eqeq1d 2760 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
76ralbidv 3126 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
87anbi2d 631 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ (((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
93, 8raleqbidv 3319 . . . . . . . . . . 11 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
102, 9anbi12d 633 . . . . . . . . . 10 (𝑤 = 𝑊 → (((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1110rexbidv 3221 . . . . . . . . 9 (𝑤 = 𝑊 → (∃𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1211rspccv 3538 . . . . . . . 8 (∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (𝑊 ∈ Word 𝑇 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
13 psgnfix.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
14 psgnfix.r . . . . . . . . 9 𝑅 = ran (pmTrsp‘𝑁)
1513, 14pmtrdifwrdel2 18681 . . . . . . . 8 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
1612, 15syl11 33 . . . . . . 7 (𝑊 ∈ Word 𝑇 → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
17163ad2ant1 1130 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1817com12 32 . . . . 5 (𝐾𝑁 → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1918ad2antlr 726 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
2019imp 410 . . 3 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
21 oveq2 7158 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑟) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
2221adantr 484 . . . . . . . 8 (((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
2322ad3antlr 730 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
24 psgnfix.z . . . . . . . 8 𝑍 = (SymGrp‘𝑁)
25 simplll 774 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → 𝑁 ∈ Fin)
2625ad2antlr 726 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑁 ∈ Fin)
27 simplll 774 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑟 ∈ Word 𝑅)
28 simprr3 1220 . . . . . . . . 9 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → 𝑈 ∈ Word 𝑅)
2928adantr 484 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑈 ∈ Word 𝑅)
30 simplrl 776 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
31 3simpa 1145 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3231adantl 485 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3332ad2antlr 726 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
34 simplrl 776 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (♯‘𝑊) = (♯‘𝑟))
3534adantr 484 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (♯‘𝑊) = (♯‘𝑟))
36 simplrr 777 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
3736adantr 484 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
38 psgnfix.p . . . . . . . . . . . . 13 𝑃 = (Base‘(SymGrp‘𝑁))
39 psgnfix.s . . . . . . . . . . . . 13 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
4038, 13, 39, 24, 14psgndiflemB 20365 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑟))))
4140imp31 421 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑟))
4241eqcomd 2764 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → (𝑍 Σg 𝑟) = 𝑄)
4330, 33, 27, 35, 37, 42syl23anc 1374 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = 𝑄)
44 id 22 . . . . . . . . . . 11 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑈))
4524eqcomi 2767 . . . . . . . . . . . 12 (SymGrp‘𝑁) = 𝑍
4645oveq1i 7160 . . . . . . . . . . 11 ((SymGrp‘𝑁) Σg 𝑈) = (𝑍 Σg 𝑈)
4744, 46eqtrdi 2809 . . . . . . . . . 10 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = (𝑍 Σg 𝑈))
4847adantl 485 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑄 = (𝑍 Σg 𝑈))
4943, 48eqtrd 2793 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = (𝑍 Σg 𝑈))
5024, 14, 26, 27, 29, 49psgnuni 18694 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑈)))
5123, 50eqtrd 2793 . . . . . 6 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))
5251ex 416 . . . . 5 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))
5352ex 416 . . . 4 ((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
5453rexlimiva 3205 . . 3 (∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
5520, 54mpcom 38 . 2 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))
5655ex 416 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071  {crab 3074  cdif 3855  {csn 4522  ran crn 5525  cres 5526  cfv 6335  (class class class)co 7150  Fincfn 8527  0cc0 10575  1c1 10576  -cneg 10909  ..^cfzo 13082  cexp 13479  chash 13740  Word cword 13913  Basecbs 16541   Σg cgsu 16772  SymGrpcsymg 18562  pmTrspcpmtr 18636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-ot 4531  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-xnn0 12007  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-word 13914  df-lsw 13962  df-concat 13970  df-s1 13997  df-substr 14050  df-pfx 14080  df-splice 14159  df-reverse 14168  df-s2 14257  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-tset 16642  df-0g 16773  df-gsum 16774  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-efmnd 18100  df-grp 18172  df-minusg 18173  df-subg 18343  df-ghm 18423  df-gim 18466  df-oppg 18541  df-symg 18563  df-pmtr 18637  df-psgn 18686
This theorem is referenced by:  psgndif  20367
  Copyright terms: Public domain W3C validator