MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemA Structured version   Visualization version   GIF version

Theorem psgndiflemA 21510
Description: Lemma 2 for psgndif 21511. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemA (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemA
Dummy variables 𝑤 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
21eqeq1d 2731 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((♯‘𝑤) = (♯‘𝑟) ↔ (♯‘𝑊) = (♯‘𝑟)))
31oveq2d 7403 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
4 fveq1 6857 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
54fveq1d 6860 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
65eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
76ralbidv 3156 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
87anbi2d 630 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ (((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
93, 8raleqbidv 3319 . . . . . . . . . . 11 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
102, 9anbi12d 632 . . . . . . . . . 10 (𝑤 = 𝑊 → (((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1110rexbidv 3157 . . . . . . . . 9 (𝑤 = 𝑊 → (∃𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1211rspccv 3585 . . . . . . . 8 (∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (𝑊 ∈ Word 𝑇 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
13 psgnfix.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
14 psgnfix.r . . . . . . . . 9 𝑅 = ran (pmTrsp‘𝑁)
1513, 14pmtrdifwrdel2 19416 . . . . . . . 8 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
1612, 15syl11 33 . . . . . . 7 (𝑊 ∈ Word 𝑇 → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
17163ad2ant1 1133 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1817com12 32 . . . . 5 (𝐾𝑁 → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1918ad2antlr 727 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
2019imp 406 . . 3 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → ∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
21 oveq2 7395 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑟) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
2221adantr 480 . . . . . . . 8 (((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
2322ad3antlr 731 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑟)))
24 psgnfix.z . . . . . . . 8 𝑍 = (SymGrp‘𝑁)
25 simplll 774 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → 𝑁 ∈ Fin)
2625ad2antlr 727 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑁 ∈ Fin)
27 simplll 774 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑟 ∈ Word 𝑅)
28 simprr3 1224 . . . . . . . . 9 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → 𝑈 ∈ Word 𝑅)
2928adantr 480 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑈 ∈ Word 𝑅)
30 simplrl 776 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
31 3simpa 1148 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3231adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3332ad2antlr 727 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
34 simplrl 776 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (♯‘𝑊) = (♯‘𝑟))
3534adantr 480 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (♯‘𝑊) = (♯‘𝑟))
36 simplrr 777 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
3736adantr 480 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
38 psgnfix.p . . . . . . . . . . . . 13 𝑃 = (Base‘(SymGrp‘𝑁))
39 psgnfix.s . . . . . . . . . . . . 13 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
4038, 13, 39, 24, 14psgndiflemB 21509 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑟))))
4140imp31 417 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑟))
4241eqcomd 2735 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → (𝑍 Σg 𝑟) = 𝑄)
4330, 33, 27, 35, 37, 42syl23anc 1379 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = 𝑄)
44 id 22 . . . . . . . . . . 11 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑈))
4524eqcomi 2738 . . . . . . . . . . . 12 (SymGrp‘𝑁) = 𝑍
4645oveq1i 7397 . . . . . . . . . . 11 ((SymGrp‘𝑁) Σg 𝑈) = (𝑍 Σg 𝑈)
4744, 46eqtrdi 2780 . . . . . . . . . 10 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = (𝑍 Σg 𝑈))
4847adantl 481 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑄 = (𝑍 Σg 𝑈))
4943, 48eqtrd 2764 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = (𝑍 Σg 𝑈))
5024, 14, 26, 27, 29, 49psgnuni 19429 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑈)))
5123, 50eqtrd 2764 . . . . . 6 ((((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))
5251ex 412 . . . . 5 (((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))
5352ex 412 . . . 4 ((𝑟 ∈ Word 𝑅 ∧ ((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
5453rexlimiva 3126 . . 3 (∃𝑟 ∈ Word 𝑅((♯‘𝑊) = (♯‘𝑟) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
5520, 54mpcom 38 . 2 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))
5655ex 412 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cdif 3911  {csn 4589  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069  -cneg 11406  ..^cfzo 13615  cexp 14026  chash 14295  Word cword 14478  Basecbs 17179   Σg cgsu 17403  SymGrpcsymg 19299  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-gim 19191  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421
This theorem is referenced by:  psgndif  21511
  Copyright terms: Public domain W3C validator