MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem4 Structured version   Visualization version   GIF version

Theorem ackbij1lem4 10217
Description: Lemma for ackbij2 10237. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Assertion
Ref Expression
ackbij1lem4 (𝐴 ∈ ω → {𝐴} ∈ (𝒫 ω ∩ Fin))

Proof of Theorem ackbij1lem4
StepHypRef Expression
1 snelpwi 5443 . 2 (𝐴 ∈ ω → {𝐴} ∈ 𝒫 ω)
2 snfi 9043 . . 3 {𝐴} ∈ Fin
32a1i 11 . 2 (𝐴 ∈ ω → {𝐴} ∈ Fin)
41, 3elind 4194 1 (𝐴 ∈ ω → {𝐴} ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cin 3947  𝒫 cpw 4602  {csn 4628  ωcom 7854  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-om 7855  df-1o 8465  df-en 8939  df-fin 8942
This theorem is referenced by:  ackbij1lem8  10221  ackbij1lem14  10227  ackbij1lem16  10229  ackbij1lem18  10231
  Copyright terms: Public domain W3C validator