| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij1lem4 | ⊢ (𝐴 ∈ ω → {𝐴} ∈ (𝒫 ω ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwi 5403 | . 2 ⊢ (𝐴 ∈ ω → {𝐴} ∈ 𝒫 ω) | |
| 2 | snfi 9014 | . . 3 ⊢ {𝐴} ∈ Fin | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ ω → {𝐴} ∈ Fin) |
| 4 | 1, 3 | elind 4163 | 1 ⊢ (𝐴 ∈ ω → {𝐴} ∈ (𝒫 ω ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3913 𝒫 cpw 4563 {csn 4589 ωcom 7842 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-om 7843 df-1o 8434 df-en 8919 df-fin 8922 |
| This theorem is referenced by: ackbij1lem8 10179 ackbij1lem14 10185 ackbij1lem16 10187 ackbij1lem18 10189 |
| Copyright terms: Public domain | W3C validator |