Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sphere Structured version   Visualization version   GIF version

Theorem sphere 45981
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
sphere ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Distinct variable groups:   𝐵,𝑝   𝑊,𝑝   𝑅,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)   𝑉(𝑝)

Proof of Theorem sphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spheres.b . . . 4 𝐵 = (Base‘𝑊)
2 spheres.l . . . 4 𝑆 = (Sphere‘𝑊)
3 spheres.d . . . 4 𝐷 = (dist‘𝑊)
41, 2, 3spheres 45980 . . 3 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
543ad2ant1 1131 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
6 oveq2 7263 . . . . 5 (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7eqeqan12d 2752 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅))
98rabbidv 3404 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
109adantl 481 . 2 (((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋𝑟 = 𝑅)) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
11 simp2 1135 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑋𝐵)
12 simp3 1136 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞))
131fvexi 6770 . . . 4 𝐵 ∈ V
1413rabex 5251 . . 3 {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V
1514a1i 11 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V)
165, 10, 11, 12, 15ovmpod 7403 1 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  Basecbs 16840  distcds 16897  Spherecsph 45962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-sph 45964
This theorem is referenced by:  rrxsphere  45982
  Copyright terms: Public domain W3C validator