Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sphere Structured version   Visualization version   GIF version

Theorem sphere 46093
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
sphere ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Distinct variable groups:   𝐵,𝑝   𝑊,𝑝   𝑅,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)   𝑉(𝑝)

Proof of Theorem sphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spheres.b . . . 4 𝐵 = (Base‘𝑊)
2 spheres.l . . . 4 𝑆 = (Sphere‘𝑊)
3 spheres.d . . . 4 𝐷 = (dist‘𝑊)
41, 2, 3spheres 46092 . . 3 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
543ad2ant1 1132 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
6 oveq2 7283 . . . . 5 (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7eqeqan12d 2752 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅))
98rabbidv 3414 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
109adantl 482 . 2 (((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋𝑟 = 𝑅)) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
11 simp2 1136 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑋𝐵)
12 simp3 1137 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞))
131fvexi 6788 . . . 4 𝐵 ∈ V
1413rabex 5256 . . 3 {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V
1514a1i 11 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V)
165, 10, 11, 12, 15ovmpod 7425 1 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  Basecbs 16912  distcds 16971  Spherecsph 46074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-sph 46076
This theorem is referenced by:  rrxsphere  46094
  Copyright terms: Public domain W3C validator