| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sphere | Structured version Visualization version GIF version | ||
| Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
| spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
| spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
| Ref | Expression |
|---|---|
| sphere | ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spheres.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | spheres.l | . . . 4 ⊢ 𝑆 = (Sphere‘𝑊) | |
| 3 | spheres.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 4 | 1, 2, 3 | spheres 48739 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| 6 | oveq2 7398 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋)) | |
| 7 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 8 | 6, 7 | eqeqan12d 2744 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅)) |
| 9 | 8 | rabbidv 3416 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋 ∧ 𝑟 = 𝑅)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| 11 | simp2 1137 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑋 ∈ 𝐵) | |
| 12 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞)) | |
| 13 | 1 | fvexi 6875 | . . . 4 ⊢ 𝐵 ∈ V |
| 14 | 13 | rabex 5297 | . . 3 ⊢ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V) |
| 16 | 5, 10, 11, 12, 15 | ovmpod 7544 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 +∞cpnf 11212 [,]cicc 13316 Basecbs 17186 distcds 17236 Spherecsph 48721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-sph 48723 |
| This theorem is referenced by: rrxsphere 48741 |
| Copyright terms: Public domain | W3C validator |