![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sphere | Structured version Visualization version GIF version |
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
sphere | ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
2 | spheres.l | . . . 4 ⊢ 𝑆 = (Sphere‘𝑊) | |
3 | spheres.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
4 | 1, 2, 3 | spheres 48634 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
5 | 4 | 3ad2ant1 1134 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
6 | oveq2 7446 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋)) | |
7 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
8 | 6, 7 | eqeqan12d 2751 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅)) |
9 | 8 | rabbidv 3444 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
10 | 9 | adantl 481 | . 2 ⊢ (((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋 ∧ 𝑟 = 𝑅)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
11 | simp2 1138 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑋 ∈ 𝐵) | |
12 | simp3 1139 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞)) | |
13 | 1 | fvexi 6928 | . . . 4 ⊢ 𝐵 ∈ V |
14 | 13 | rabex 5348 | . . 3 ⊢ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V) |
16 | 5, 10, 11, 12, 15 | ovmpod 7592 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 {crab 3436 Vcvv 3481 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 0cc0 11162 +∞cpnf 11299 [,]cicc 13396 Basecbs 17254 distcds 17316 Spherecsph 48616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-sph 48618 |
This theorem is referenced by: rrxsphere 48636 |
Copyright terms: Public domain | W3C validator |