Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sphere Structured version   Visualization version   GIF version

Theorem sphere 48733
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
sphere ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Distinct variable groups:   𝐵,𝑝   𝑊,𝑝   𝑅,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)   𝑉(𝑝)

Proof of Theorem sphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spheres.b . . . 4 𝐵 = (Base‘𝑊)
2 spheres.l . . . 4 𝑆 = (Sphere‘𝑊)
3 spheres.d . . . 4 𝐷 = (dist‘𝑊)
41, 2, 3spheres 48732 . . 3 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
543ad2ant1 1133 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
6 oveq2 7361 . . . . 5 (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7eqeqan12d 2743 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅))
98rabbidv 3404 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
109adantl 481 . 2 (((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋𝑟 = 𝑅)) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
11 simp2 1137 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑋𝐵)
12 simp3 1138 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞))
131fvexi 6840 . . . 4 𝐵 ∈ V
1413rabex 5281 . . 3 {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V
1514a1i 11 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V)
165, 10, 11, 12, 15ovmpod 7505 1 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cfv 6486  (class class class)co 7353  cmpo 7355  0cc0 11028  +∞cpnf 11165  [,]cicc 13269  Basecbs 17138  distcds 17188  Spherecsph 48714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-sph 48716
This theorem is referenced by:  rrxsphere  48734
  Copyright terms: Public domain W3C validator