Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sphere | Structured version Visualization version GIF version |
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
sphere | ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
2 | spheres.l | . . . 4 ⊢ 𝑆 = (Sphere‘𝑊) | |
3 | spheres.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
4 | 1, 2, 3 | spheres 46092 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
6 | oveq2 7283 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋)) | |
7 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
8 | 6, 7 | eqeqan12d 2752 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅)) |
9 | 8 | rabbidv 3414 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
10 | 9 | adantl 482 | . 2 ⊢ (((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋 ∧ 𝑟 = 𝑅)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
11 | simp2 1136 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑋 ∈ 𝐵) | |
12 | simp3 1137 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞)) | |
13 | 1 | fvexi 6788 | . . . 4 ⊢ 𝐵 ∈ V |
14 | 13 | rabex 5256 | . . 3 ⊢ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V) |
16 | 5, 10, 11, 12, 15 | ovmpod 7425 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 +∞cpnf 11006 [,]cicc 13082 Basecbs 16912 distcds 16971 Spherecsph 46074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-sph 46076 |
This theorem is referenced by: rrxsphere 46094 |
Copyright terms: Public domain | W3C validator |