| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sphere | Structured version Visualization version GIF version | ||
| Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
| spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
| spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
| Ref | Expression |
|---|---|
| sphere | ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spheres.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | spheres.l | . . . 4 ⊢ 𝑆 = (Sphere‘𝑊) | |
| 3 | spheres.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 4 | 1, 2, 3 | spheres 48777 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| 6 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋)) | |
| 7 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 8 | 6, 7 | eqeqan12d 2745 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅)) |
| 9 | 8 | rabbidv 3402 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋 ∧ 𝑟 = 𝑅)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| 11 | simp2 1137 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑋 ∈ 𝐵) | |
| 12 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞)) | |
| 13 | 1 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 14 | 13 | rabex 5277 | . . 3 ⊢ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V) |
| 16 | 5, 10, 11, 12, 15 | ovmpod 7498 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 +∞cpnf 11140 [,]cicc 13245 Basecbs 17117 distcds 17167 Spherecsph 48759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sph 48761 |
| This theorem is referenced by: rrxsphere 48779 |
| Copyright terms: Public domain | W3C validator |