Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sphere Structured version   Visualization version   GIF version

Theorem sphere 48872
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
sphere ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Distinct variable groups:   𝐵,𝑝   𝑊,𝑝   𝑅,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)   𝑉(𝑝)

Proof of Theorem sphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spheres.b . . . 4 𝐵 = (Base‘𝑊)
2 spheres.l . . . 4 𝑆 = (Sphere‘𝑊)
3 spheres.d . . . 4 𝐷 = (dist‘𝑊)
41, 2, 3spheres 48871 . . 3 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
543ad2ant1 1133 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
6 oveq2 7360 . . . . 5 (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7eqeqan12d 2747 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅))
98rabbidv 3403 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
109adantl 481 . 2 (((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋𝑟 = 𝑅)) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
11 simp2 1137 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑋𝐵)
12 simp3 1138 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞))
131fvexi 6842 . . . 4 𝐵 ∈ V
1413rabex 5279 . . 3 {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V
1514a1i 11 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V)
165, 10, 11, 12, 15ovmpod 7504 1 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cfv 6486  (class class class)co 7352  cmpo 7354  0cc0 11013  +∞cpnf 11150  [,]cicc 13250  Basecbs 17122  distcds 17172  Spherecsph 48853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-sph 48855
This theorem is referenced by:  rrxsphere  48873
  Copyright terms: Public domain W3C validator