Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sphere Structured version   Visualization version   GIF version

Theorem sphere 47521
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐡 = (Baseβ€˜π‘Š)
spheres.l 𝑆 = (Sphereβ€˜π‘Š)
spheres.d 𝐷 = (distβ€˜π‘Š)
Assertion
Ref Expression
sphere ((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) β†’ (𝑋𝑆𝑅) = {𝑝 ∈ 𝐡 ∣ (𝑝𝐷𝑋) = 𝑅})
Distinct variable groups:   𝐡,𝑝   π‘Š,𝑝   𝑅,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)   𝑉(𝑝)

Proof of Theorem sphere
Dummy variables π‘Ÿ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spheres.b . . . 4 𝐡 = (Baseβ€˜π‘Š)
2 spheres.l . . . 4 𝑆 = (Sphereβ€˜π‘Š)
3 spheres.d . . . 4 𝐷 = (distβ€˜π‘Š)
41, 2, 3spheres 47520 . . 3 (π‘Š ∈ 𝑉 β†’ 𝑆 = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
543ad2ant1 1133 . 2 ((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) β†’ 𝑆 = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
6 oveq2 7419 . . . . 5 (π‘₯ = 𝑋 β†’ (𝑝𝐷π‘₯) = (𝑝𝐷𝑋))
7 id 22 . . . . 5 (π‘Ÿ = 𝑅 β†’ π‘Ÿ = 𝑅)
86, 7eqeqan12d 2746 . . . 4 ((π‘₯ = 𝑋 ∧ π‘Ÿ = 𝑅) β†’ ((𝑝𝐷π‘₯) = π‘Ÿ ↔ (𝑝𝐷𝑋) = 𝑅))
98rabbidv 3440 . . 3 ((π‘₯ = 𝑋 ∧ π‘Ÿ = 𝑅) β†’ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ} = {𝑝 ∈ 𝐡 ∣ (𝑝𝐷𝑋) = 𝑅})
109adantl 482 . 2 (((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) ∧ (π‘₯ = 𝑋 ∧ π‘Ÿ = 𝑅)) β†’ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ} = {𝑝 ∈ 𝐡 ∣ (𝑝𝐷𝑋) = 𝑅})
11 simp2 1137 . 2 ((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) β†’ 𝑋 ∈ 𝐡)
12 simp3 1138 . 2 ((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) β†’ 𝑅 ∈ (0[,]+∞))
131fvexi 6905 . . . 4 𝐡 ∈ V
1413rabex 5332 . . 3 {𝑝 ∈ 𝐡 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V
1514a1i 11 . 2 ((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) β†’ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V)
165, 10, 11, 12, 15ovmpod 7562 1 ((π‘Š ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ 𝑅 ∈ (0[,]+∞)) β†’ (𝑋𝑆𝑅) = {𝑝 ∈ 𝐡 ∣ (𝑝𝐷𝑋) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  0cc0 11112  +∞cpnf 11249  [,]cicc 13331  Basecbs 17148  distcds 17210  Spherecsph 47502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-sph 47504
This theorem is referenced by:  rrxsphere  47522
  Copyright terms: Public domain W3C validator