![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sphere | Structured version Visualization version GIF version |
Description: A sphere with center π and radius π in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | β’ π΅ = (Baseβπ) |
spheres.l | β’ π = (Sphereβπ) |
spheres.d | β’ π· = (distβπ) |
Ref | Expression |
---|---|
sphere | β’ ((π β π β§ π β π΅ β§ π β (0[,]+β)) β (πππ ) = {π β π΅ β£ (ππ·π) = π }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.b | . . . 4 β’ π΅ = (Baseβπ) | |
2 | spheres.l | . . . 4 β’ π = (Sphereβπ) | |
3 | spheres.d | . . . 4 β’ π· = (distβπ) | |
4 | 1, 2, 3 | spheres 47520 | . . 3 β’ (π β π β π = (π₯ β π΅, π β (0[,]+β) β¦ {π β π΅ β£ (ππ·π₯) = π})) |
5 | 4 | 3ad2ant1 1133 | . 2 β’ ((π β π β§ π β π΅ β§ π β (0[,]+β)) β π = (π₯ β π΅, π β (0[,]+β) β¦ {π β π΅ β£ (ππ·π₯) = π})) |
6 | oveq2 7419 | . . . . 5 β’ (π₯ = π β (ππ·π₯) = (ππ·π)) | |
7 | id 22 | . . . . 5 β’ (π = π β π = π ) | |
8 | 6, 7 | eqeqan12d 2746 | . . . 4 β’ ((π₯ = π β§ π = π ) β ((ππ·π₯) = π β (ππ·π) = π )) |
9 | 8 | rabbidv 3440 | . . 3 β’ ((π₯ = π β§ π = π ) β {π β π΅ β£ (ππ·π₯) = π} = {π β π΅ β£ (ππ·π) = π }) |
10 | 9 | adantl 482 | . 2 β’ (((π β π β§ π β π΅ β§ π β (0[,]+β)) β§ (π₯ = π β§ π = π )) β {π β π΅ β£ (ππ·π₯) = π} = {π β π΅ β£ (ππ·π) = π }) |
11 | simp2 1137 | . 2 β’ ((π β π β§ π β π΅ β§ π β (0[,]+β)) β π β π΅) | |
12 | simp3 1138 | . 2 β’ ((π β π β§ π β π΅ β§ π β (0[,]+β)) β π β (0[,]+β)) | |
13 | 1 | fvexi 6905 | . . . 4 β’ π΅ β V |
14 | 13 | rabex 5332 | . . 3 β’ {π β π΅ β£ (ππ·π) = π } β V |
15 | 14 | a1i 11 | . 2 β’ ((π β π β§ π β π΅ β§ π β (0[,]+β)) β {π β π΅ β£ (ππ·π) = π } β V) |
16 | 5, 10, 11, 12, 15 | ovmpod 7562 | 1 β’ ((π β π β§ π β π΅ β§ π β (0[,]+β)) β (πππ ) = {π β π΅ β£ (ππ·π) = π }) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 βcfv 6543 (class class class)co 7411 β cmpo 7413 0cc0 11112 +βcpnf 11249 [,]cicc 13331 Basecbs 17148 distcds 17210 Spherecsph 47502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-sph 47504 |
This theorem is referenced by: rrxsphere 47522 |
Copyright terms: Public domain | W3C validator |