Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sphere Structured version   Visualization version   GIF version

Theorem sphere 47521
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
sphere ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Distinct variable groups:   𝐵,𝑝   𝑊,𝑝   𝑅,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)   𝑉(𝑝)

Proof of Theorem sphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spheres.b . . . 4 𝐵 = (Base‘𝑊)
2 spheres.l . . . 4 𝑆 = (Sphere‘𝑊)
3 spheres.d . . . 4 𝐷 = (dist‘𝑊)
41, 2, 3spheres 47520 . . 3 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
543ad2ant1 1132 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
6 oveq2 7420 . . . . 5 (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7eqeqan12d 2745 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅))
98rabbidv 3439 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
109adantl 481 . 2 (((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋𝑟 = 𝑅)) → {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
11 simp2 1136 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑋𝐵)
12 simp3 1137 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞))
131fvexi 6905 . . . 4 𝐵 ∈ V
1413rabex 5332 . . 3 {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V
1514a1i 11 . 2 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V)
165, 10, 11, 12, 15ovmpod 7563 1 ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  cfv 6543  (class class class)co 7412  cmpo 7414  0cc0 11114  +∞cpnf 11250  [,]cicc 13332  Basecbs 17149  distcds 17211  Spherecsph 47502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-sph 47504
This theorem is referenced by:  rrxsphere  47522
  Copyright terms: Public domain W3C validator