Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sphere | Structured version Visualization version GIF version |
Description: A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
sphere | ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
2 | spheres.l | . . . 4 ⊢ 𝑆 = (Sphere‘𝑊) | |
3 | spheres.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
4 | 1, 2, 3 | spheres 45980 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
6 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑝𝐷𝑥) = (𝑝𝐷𝑋)) | |
7 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
8 | 6, 7 | eqeqan12d 2752 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑝𝐷𝑥) = 𝑟 ↔ (𝑝𝐷𝑋) = 𝑅)) |
9 | 8 | rabbidv 3404 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
10 | 9 | adantl 481 | . 2 ⊢ (((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) ∧ (𝑥 = 𝑋 ∧ 𝑟 = 𝑅)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
11 | simp2 1135 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑋 ∈ 𝐵) | |
12 | simp3 1136 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → 𝑅 ∈ (0[,]+∞)) | |
13 | 1 | fvexi 6770 | . . . 4 ⊢ 𝐵 ∈ V |
14 | 13 | rabex 5251 | . . 3 ⊢ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅} ∈ V) |
16 | 5, 10, 11, 12, 15 | ovmpod 7403 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 Basecbs 16840 distcds 16897 Spherecsph 45962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-sph 45964 |
This theorem is referenced by: rrxsphere 45982 |
Copyright terms: Public domain | W3C validator |