![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthonisspth | Structured version Visualization version GIF version |
Description: A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 18-Jan-2021.) |
Ref | Expression |
---|---|
spthonisspth | โข (๐น(๐ด(SPathsOnโ๐บ)๐ต)๐ โ ๐น(SPathsโ๐บ)๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 โข (Vtxโ๐บ) = (Vtxโ๐บ) | |
2 | 1 | spthonprop 29270 | . 2 โข (๐น(๐ด(SPathsOnโ๐บ)๐ต)๐ โ ((๐บ โ V โง ๐ด โ (Vtxโ๐บ) โง ๐ต โ (Vtxโ๐บ)) โง (๐น โ V โง ๐ โ V) โง (๐น(๐ด(TrailsOnโ๐บ)๐ต)๐ โง ๐น(SPathsโ๐บ)๐))) |
3 | simp3r 1201 | . 2 โข (((๐บ โ V โง ๐ด โ (Vtxโ๐บ) โง ๐ต โ (Vtxโ๐บ)) โง (๐น โ V โง ๐ โ V) โง (๐น(๐ด(TrailsOnโ๐บ)๐ต)๐ โง ๐น(SPathsโ๐บ)๐)) โ ๐น(SPathsโ๐บ)๐) | |
4 | 2, 3 | syl 17 | 1 โข (๐น(๐ด(SPathsOnโ๐บ)๐ต)๐ โ ๐น(SPathsโ๐บ)๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 โง w3a 1086 โ wcel 2105 Vcvv 3473 class class class wbr 5148 โcfv 6543 (class class class)co 7412 Vtxcvtx 28524 TrailsOnctrlson 29216 SPathscspths 29238 SPathsOncspthson 29240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-spthson 29244 |
This theorem is referenced by: usgr2trlspth 29286 wspthsnonn0vne 29439 |
Copyright terms: Public domain | W3C validator |