MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonisspth Structured version   Visualization version   GIF version

Theorem spthonisspth 29728
Description: A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 18-Jan-2021.)
Assertion
Ref Expression
spthonisspth (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem spthonisspth
StepHypRef Expression
1 eqid 2731 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21spthonprop 29723 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
3 simp3r 1203 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)) → 𝐹(SPaths‘𝐺)𝑃)
42, 3syl 17 1 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  Vcvv 3436   class class class wbr 5089  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  TrailsOnctrlson 29668  SPathscspths 29689  SPathsOncspthson 29691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-spthson 29695
This theorem is referenced by:  usgr2trlspth  29739  wspthsnonn0vne  29895
  Copyright terms: Public domain W3C validator