Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspnval | Structured version Visualization version GIF version |
Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspn.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspn.n | ⊢ 𝑁 = (normCV‘𝑈) |
sspn.m | ⊢ 𝑀 = (normCV‘𝑊) |
sspn.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspnval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspn.y | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | sspn.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | sspn.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑊) | |
4 | sspn.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
5 | 1, 2, 3, 4 | sspn 28999 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) |
6 | 5 | fveq1d 6758 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑀‘𝐴) = ((𝑁 ↾ 𝑌)‘𝐴)) |
7 | fvres 6775 | . . 3 ⊢ (𝐴 ∈ 𝑌 → ((𝑁 ↾ 𝑌)‘𝐴) = (𝑁‘𝐴)) | |
8 | 6, 7 | sylan9eq 2799 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) |
9 | 8 | 3impa 1108 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ↾ cres 5582 ‘cfv 6418 NrmCVeccnv 28847 BaseSetcba 28849 normCVcnmcv 28853 SubSpcss 28984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-ssp 28985 |
This theorem is referenced by: sspimsval 29001 |
Copyright terms: Public domain | W3C validator |