MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspnval Structured version   Visualization version   GIF version

Theorem sspnval 30699
Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y 𝑌 = (BaseSet‘𝑊)
sspn.n 𝑁 = (normCV𝑈)
sspn.m 𝑀 = (normCV𝑊)
sspn.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspnval ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))

Proof of Theorem sspnval
StepHypRef Expression
1 sspn.y . . . . 5 𝑌 = (BaseSet‘𝑊)
2 sspn.n . . . . 5 𝑁 = (normCV𝑈)
3 sspn.m . . . . 5 𝑀 = (normCV𝑊)
4 sspn.h . . . . 5 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspn 30698 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 = (𝑁𝑌))
65fveq1d 6828 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑀𝐴) = ((𝑁𝑌)‘𝐴))
7 fvres 6845 . . 3 (𝐴𝑌 → ((𝑁𝑌)‘𝐴) = (𝑁𝐴))
86, 7sylan9eq 2784 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))
983impa 1109 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cres 5625  cfv 6486  NrmCVeccnv 30546  BaseSetcba 30548  normCVcnmcv 30552  SubSpcss 30683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-1st 7931  df-2nd 7932  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-nmcv 30562  df-ssp 30684
This theorem is referenced by:  sspimsval  30700
  Copyright terms: Public domain W3C validator