| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspnval | Structured version Visualization version GIF version | ||
| Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspn.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspn.n | ⊢ 𝑁 = (normCV‘𝑈) |
| sspn.m | ⊢ 𝑀 = (normCV‘𝑊) |
| sspn.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspnval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspn.y | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspn.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 3 | sspn.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑊) | |
| 4 | sspn.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | sspn 30722 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) |
| 6 | 5 | fveq1d 6883 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑀‘𝐴) = ((𝑁 ↾ 𝑌)‘𝐴)) |
| 7 | fvres 6900 | . . 3 ⊢ (𝐴 ∈ 𝑌 → ((𝑁 ↾ 𝑌)‘𝐴) = (𝑁‘𝐴)) | |
| 8 | 6, 7 | sylan9eq 2791 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↾ cres 5661 ‘cfv 6536 NrmCVeccnv 30570 BaseSetcba 30572 normCVcnmcv 30576 SubSpcss 30707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-1st 7993 df-2nd 7994 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-nmcv 30586 df-ssp 30708 |
| This theorem is referenced by: sspimsval 30724 |
| Copyright terms: Public domain | W3C validator |