MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspnval Structured version   Visualization version   GIF version

Theorem sspnval 30723
Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y 𝑌 = (BaseSet‘𝑊)
sspn.n 𝑁 = (normCV𝑈)
sspn.m 𝑀 = (normCV𝑊)
sspn.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspnval ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))

Proof of Theorem sspnval
StepHypRef Expression
1 sspn.y . . . . 5 𝑌 = (BaseSet‘𝑊)
2 sspn.n . . . . 5 𝑁 = (normCV𝑈)
3 sspn.m . . . . 5 𝑀 = (normCV𝑊)
4 sspn.h . . . . 5 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspn 30722 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 = (𝑁𝑌))
65fveq1d 6883 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑀𝐴) = ((𝑁𝑌)‘𝐴))
7 fvres 6900 . . 3 (𝐴𝑌 → ((𝑁𝑌)‘𝐴) = (𝑁𝐴))
86, 7sylan9eq 2791 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))
983impa 1109 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌) → (𝑀𝐴) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cres 5661  cfv 6536  NrmCVeccnv 30570  BaseSetcba 30572  normCVcnmcv 30576  SubSpcss 30707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-1st 7993  df-2nd 7994  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586  df-ssp 30708
This theorem is referenced by:  sspimsval  30724
  Copyright terms: Public domain W3C validator