MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspimsval Structured version   Visualization version   GIF version

Theorem sspimsval 30682
Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspims.y 𝑌 = (BaseSet‘𝑊)
sspims.d 𝐷 = (IndMet‘𝑈)
sspims.c 𝐶 = (IndMet‘𝑊)
sspims.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspimsval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))

Proof of Theorem sspimsval
StepHypRef Expression
1 sspims.h . . . . . 6 𝐻 = (SubSp‘𝑈)
21sspnv 30670 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 sspims.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
4 eqid 2729 . . . . . . 7 ( −𝑣𝑊) = ( −𝑣𝑊)
53, 4nvmcl 30590 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
653expb 1120 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
72, 6sylan 580 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
8 eqid 2729 . . . . . 6 (normCV𝑈) = (normCV𝑈)
9 eqid 2729 . . . . . 6 (normCV𝑊) = (normCV𝑊)
103, 8, 9, 1sspnval 30681 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
11103expa 1118 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
127, 11syldan 591 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
13 eqid 2729 . . . . 5 ( −𝑣𝑈) = ( −𝑣𝑈)
143, 13, 4, 1sspmval 30677 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) = (𝐴( −𝑣𝑈)𝐵))
1514fveq2d 6826 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
1612, 15eqtrd 2764 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
17 sspims.c . . . . 5 𝐶 = (IndMet‘𝑊)
183, 4, 9, 17imsdval 30630 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
19183expb 1120 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
202, 19sylan 580 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
21 eqid 2729 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2221, 3, 1sspba 30671 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2322sseld 3934 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2422sseld 3934 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
2523, 24anim12d 609 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
2625imp 406 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
27 sspims.d . . . . . 6 𝐷 = (IndMet‘𝑈)
2821, 13, 8, 27imsdval 30630 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
29283expb 1120 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3029adantlr 715 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3126, 30syldan 591 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3216, 20, 313eqtr4d 2774 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  NrmCVeccnv 30528  BaseSetcba 30530  𝑣 cnsb 30533  normCVcnmcv 30534  IndMetcims 30535  SubSpcss 30665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-ssp 30666
This theorem is referenced by:  sspims  30683
  Copyright terms: Public domain W3C validator