Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspimsval Structured version   Visualization version   GIF version

Theorem sspimsval 28531
 Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspims.y 𝑌 = (BaseSet‘𝑊)
sspims.d 𝐷 = (IndMet‘𝑈)
sspims.c 𝐶 = (IndMet‘𝑊)
sspims.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspimsval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))

Proof of Theorem sspimsval
StepHypRef Expression
1 sspims.h . . . . . 6 𝐻 = (SubSp‘𝑈)
21sspnv 28519 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 sspims.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
4 eqid 2798 . . . . . . 7 ( −𝑣𝑊) = ( −𝑣𝑊)
53, 4nvmcl 28439 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
653expb 1117 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
72, 6sylan 583 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
8 eqid 2798 . . . . . 6 (normCV𝑈) = (normCV𝑈)
9 eqid 2798 . . . . . 6 (normCV𝑊) = (normCV𝑊)
103, 8, 9, 1sspnval 28530 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
11103expa 1115 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
127, 11syldan 594 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
13 eqid 2798 . . . . 5 ( −𝑣𝑈) = ( −𝑣𝑈)
143, 13, 4, 1sspmval 28526 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) = (𝐴( −𝑣𝑈)𝐵))
1514fveq2d 6650 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
1612, 15eqtrd 2833 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
17 sspims.c . . . . 5 𝐶 = (IndMet‘𝑊)
183, 4, 9, 17imsdval 28479 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
19183expb 1117 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
202, 19sylan 583 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
21 eqid 2798 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2221, 3, 1sspba 28520 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2322sseld 3914 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2422sseld 3914 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
2523, 24anim12d 611 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
2625imp 410 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
27 sspims.d . . . . . 6 𝐷 = (IndMet‘𝑈)
2821, 13, 8, 27imsdval 28479 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
29283expb 1117 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3029adantlr 714 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3126, 30syldan 594 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3216, 20, 313eqtr4d 2843 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136  NrmCVeccnv 28377  BaseSetcba 28379   −𝑣 cnsb 28382  normCVcnmcv 28383  IndMetcims 28384  SubSpcss 28514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-po 5439  df-so 5440  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-1st 7674  df-2nd 7675  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864  df-neg 10865  df-grpo 28286  df-gid 28287  df-ginv 28288  df-gdiv 28289  df-ablo 28338  df-vc 28352  df-nv 28385  df-va 28388  df-ba 28389  df-sm 28390  df-0v 28391  df-vs 28392  df-nmcv 28393  df-ims 28394  df-ssp 28515 This theorem is referenced by:  sspims  28532
 Copyright terms: Public domain W3C validator