Proof of Theorem sspimsval
| Step | Hyp | Ref
| Expression |
| 1 | | sspims.h |
. . . . . 6
⊢ 𝐻 = (SubSp‘𝑈) |
| 2 | 1 | sspnv 30745 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| 3 | | sspims.y |
. . . . . . 7
⊢ 𝑌 = (BaseSet‘𝑊) |
| 4 | | eqid 2737 |
. . . . . . 7
⊢ (
−𝑣 ‘𝑊) = ( −𝑣
‘𝑊) |
| 5 | 3, 4 | nvmcl 30665 |
. . . . . 6
⊢ ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴( −𝑣 ‘𝑊)𝐵) ∈ 𝑌) |
| 6 | 5 | 3expb 1121 |
. . . . 5
⊢ ((𝑊 ∈ NrmCVec ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴( −𝑣 ‘𝑊)𝐵) ∈ 𝑌) |
| 7 | 2, 6 | sylan 580 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴( −𝑣 ‘𝑊)𝐵) ∈ 𝑌) |
| 8 | | eqid 2737 |
. . . . . 6
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
| 9 | | eqid 2737 |
. . . . . 6
⊢
(normCV‘𝑊) = (normCV‘𝑊) |
| 10 | 3, 8, 9, 1 | sspnval 30756 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ (𝐴( −𝑣 ‘𝑊)𝐵) ∈ 𝑌) → ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵)) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑊)𝐵))) |
| 11 | 10 | 3expa 1119 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴( −𝑣 ‘𝑊)𝐵) ∈ 𝑌) → ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵)) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑊)𝐵))) |
| 12 | 7, 11 | syldan 591 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵)) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑊)𝐵))) |
| 13 | | eqid 2737 |
. . . . 5
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
| 14 | 3, 13, 4, 1 | sspmval 30752 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴( −𝑣 ‘𝑊)𝐵) = (𝐴( −𝑣 ‘𝑈)𝐵)) |
| 15 | 14 | fveq2d 6910 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑊)𝐵)) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑈)𝐵))) |
| 16 | 12, 15 | eqtrd 2777 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵)) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑈)𝐵))) |
| 17 | | sspims.c |
. . . . 5
⊢ 𝐶 = (IndMet‘𝑊) |
| 18 | 3, 4, 9, 17 | imsdval 30705 |
. . . 4
⊢ ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐶𝐵) = ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵))) |
| 19 | 18 | 3expb 1121 |
. . 3
⊢ ((𝑊 ∈ NrmCVec ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵))) |
| 20 | 2, 19 | sylan 580 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = ((normCV‘𝑊)‘(𝐴( −𝑣 ‘𝑊)𝐵))) |
| 21 | | eqid 2737 |
. . . . . . 7
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
| 22 | 21, 3, 1 | sspba 30746 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ (BaseSet‘𝑈)) |
| 23 | 22 | sseld 3982 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴 ∈ 𝑌 → 𝐴 ∈ (BaseSet‘𝑈))) |
| 24 | 22 | sseld 3982 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐵 ∈ 𝑌 → 𝐵 ∈ (BaseSet‘𝑈))) |
| 25 | 23, 24 | anim12d 609 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))) |
| 26 | 25 | imp 406 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) |
| 27 | | sspims.d |
. . . . . 6
⊢ 𝐷 = (IndMet‘𝑈) |
| 28 | 21, 13, 8, 27 | imsdval 30705 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝐷𝐵) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑈)𝐵))) |
| 29 | 28 | 3expb 1121 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑈)𝐵))) |
| 30 | 29 | adantlr 715 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑈)𝐵))) |
| 31 | 26, 30 | syldan 591 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐷𝐵) = ((normCV‘𝑈)‘(𝐴( −𝑣 ‘𝑈)𝐵))) |
| 32 | 16, 20, 31 | 3eqtr4d 2787 |
1
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵)) |