MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspimsval Structured version   Visualization version   GIF version

Theorem sspimsval 30757
Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspims.y 𝑌 = (BaseSet‘𝑊)
sspims.d 𝐷 = (IndMet‘𝑈)
sspims.c 𝐶 = (IndMet‘𝑊)
sspims.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspimsval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))

Proof of Theorem sspimsval
StepHypRef Expression
1 sspims.h . . . . . 6 𝐻 = (SubSp‘𝑈)
21sspnv 30745 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 sspims.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
4 eqid 2737 . . . . . . 7 ( −𝑣𝑊) = ( −𝑣𝑊)
53, 4nvmcl 30665 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
653expb 1121 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
72, 6sylan 580 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
8 eqid 2737 . . . . . 6 (normCV𝑈) = (normCV𝑈)
9 eqid 2737 . . . . . 6 (normCV𝑊) = (normCV𝑊)
103, 8, 9, 1sspnval 30756 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
11103expa 1119 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
127, 11syldan 591 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
13 eqid 2737 . . . . 5 ( −𝑣𝑈) = ( −𝑣𝑈)
143, 13, 4, 1sspmval 30752 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) = (𝐴( −𝑣𝑈)𝐵))
1514fveq2d 6910 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
1612, 15eqtrd 2777 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
17 sspims.c . . . . 5 𝐶 = (IndMet‘𝑊)
183, 4, 9, 17imsdval 30705 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
19183expb 1121 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
202, 19sylan 580 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
21 eqid 2737 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2221, 3, 1sspba 30746 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2322sseld 3982 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2422sseld 3982 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
2523, 24anim12d 609 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
2625imp 406 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
27 sspims.d . . . . . 6 𝐷 = (IndMet‘𝑈)
2821, 13, 8, 27imsdval 30705 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
29283expb 1121 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3029adantlr 715 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3126, 30syldan 591 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3216, 20, 313eqtr4d 2787 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  NrmCVeccnv 30603  BaseSetcba 30605  𝑣 cnsb 30608  normCVcnmcv 30609  IndMetcims 30610  SubSpcss 30740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-ssp 30741
This theorem is referenced by:  sspims  30758
  Copyright terms: Public domain W3C validator