MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksuc Structured version   Visualization version   GIF version

Theorem ranksuc 9147
Description: The rank of a successor. (Contributed by NM, 18-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
ranksuc (rank‘suc 𝐴) = suc (rank‘𝐴)

Proof of Theorem ranksuc
StepHypRef Expression
1 df-suc 6079 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
21fveq2i 6548 . 2 (rank‘suc 𝐴) = (rank‘(𝐴 ∪ {𝐴}))
3 rankr1b.1 . . . 4 𝐴 ∈ V
4 snex 5230 . . . 4 {𝐴} ∈ V
53, 4rankun 9138 . . 3 (rank‘(𝐴 ∪ {𝐴})) = ((rank‘𝐴) ∪ (rank‘{𝐴}))
63ranksn 9136 . . . . 5 (rank‘{𝐴}) = suc (rank‘𝐴)
76uneq2i 4063 . . . 4 ((rank‘𝐴) ∪ (rank‘{𝐴})) = ((rank‘𝐴) ∪ suc (rank‘𝐴))
8 sssucid 6150 . . . . 5 (rank‘𝐴) ⊆ suc (rank‘𝐴)
9 ssequn1 4083 . . . . 5 ((rank‘𝐴) ⊆ suc (rank‘𝐴) ↔ ((rank‘𝐴) ∪ suc (rank‘𝐴)) = suc (rank‘𝐴))
108, 9mpbi 231 . . . 4 ((rank‘𝐴) ∪ suc (rank‘𝐴)) = suc (rank‘𝐴)
117, 10eqtri 2821 . . 3 ((rank‘𝐴) ∪ (rank‘{𝐴})) = suc (rank‘𝐴)
125, 11eqtri 2821 . 2 (rank‘(𝐴 ∪ {𝐴})) = suc (rank‘𝐴)
132, 12eqtri 2821 1 (rank‘suc 𝐴) = suc (rank‘𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1525  wcel 2083  Vcvv 3440  cun 3863  wss 3865  {csn 4478  suc csuc 6075  cfv 6232  rankcrnk 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-reg 8909  ax-inf2 8957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-r1 9046  df-rank 9047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator