Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ranksuc | Structured version Visualization version GIF version |
Description: The rank of a successor. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ranksuc | ⊢ (rank‘suc 𝐴) = suc (rank‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6219 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | fveq2i 6720 | . 2 ⊢ (rank‘suc 𝐴) = (rank‘(𝐴 ∪ {𝐴})) |
3 | rankr1b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | snex 5324 | . . . 4 ⊢ {𝐴} ∈ V | |
5 | 3, 4 | rankun 9472 | . . 3 ⊢ (rank‘(𝐴 ∪ {𝐴})) = ((rank‘𝐴) ∪ (rank‘{𝐴})) |
6 | 3 | ranksn 9470 | . . . . 5 ⊢ (rank‘{𝐴}) = suc (rank‘𝐴) |
7 | 6 | uneq2i 4074 | . . . 4 ⊢ ((rank‘𝐴) ∪ (rank‘{𝐴})) = ((rank‘𝐴) ∪ suc (rank‘𝐴)) |
8 | sssucid 6290 | . . . . 5 ⊢ (rank‘𝐴) ⊆ suc (rank‘𝐴) | |
9 | ssequn1 4094 | . . . . 5 ⊢ ((rank‘𝐴) ⊆ suc (rank‘𝐴) ↔ ((rank‘𝐴) ∪ suc (rank‘𝐴)) = suc (rank‘𝐴)) | |
10 | 8, 9 | mpbi 233 | . . . 4 ⊢ ((rank‘𝐴) ∪ suc (rank‘𝐴)) = suc (rank‘𝐴) |
11 | 7, 10 | eqtri 2765 | . . 3 ⊢ ((rank‘𝐴) ∪ (rank‘{𝐴})) = suc (rank‘𝐴) |
12 | 5, 11 | eqtri 2765 | . 2 ⊢ (rank‘(𝐴 ∪ {𝐴})) = suc (rank‘𝐴) |
13 | 2, 12 | eqtri 2765 | 1 ⊢ (rank‘suc 𝐴) = suc (rank‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 {csn 4541 suc csuc 6215 ‘cfv 6380 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-reg 9208 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-r1 9380 df-rank 9381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |