![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stj | Structured version Visualization version GIF version |
Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stj | ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isst 29616 | . . . 4 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
2 | 1 | simp3bi 1181 | . . 3 ⊢ (𝑆 ∈ States → ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦)))) |
3 | sseq1 3851 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦))) | |
4 | fvoveq1 6928 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑆‘(𝑥 ∨ℋ 𝑦)) = (𝑆‘(𝐴 ∨ℋ 𝑦))) | |
5 | fveq2 6433 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
6 | 5 | oveq1d 6920 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) + (𝑆‘𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))) |
7 | 4, 6 | eqeq12d 2840 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦)) ↔ (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦)))) |
8 | 3, 7 | imbi12d 336 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))))) |
9 | fveq2 6433 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵)) | |
10 | 9 | sseq2d 3858 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵))) |
11 | oveq2 6913 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 ∨ℋ 𝑦) = (𝐴 ∨ℋ 𝐵)) | |
12 | 11 | fveq2d 6437 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑆‘(𝐴 ∨ℋ 𝑦)) = (𝑆‘(𝐴 ∨ℋ 𝐵))) |
13 | fveq2 6433 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑆‘𝑦) = (𝑆‘𝐵)) | |
14 | 13 | oveq2d 6921 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑆‘𝐴) + (𝑆‘𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝐵))) |
15 | 12, 14 | eqeq12d 2840 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦)) ↔ (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) |
16 | 10, 15 | imbi12d 336 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) |
17 | 8, 16 | rspc2v 3539 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) |
18 | 2, 17 | syl5com 31 | . 2 ⊢ (𝑆 ∈ States → ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) |
19 | 18 | impd 400 | 1 ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 0cc0 10252 1c1 10253 + caddc 10255 [,]cicc 12466 ℋchba 28320 Cℋ cch 28330 ⊥cort 28331 ∨ℋ chj 28334 Statescst 28363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-hilex 28400 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-sh 28608 df-ch 28622 df-st 29614 |
This theorem is referenced by: sto1i 29639 stlei 29643 stji1i 29645 |
Copyright terms: Public domain | W3C validator |