| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > stj | Structured version Visualization version GIF version | ||
| Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| stj | ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isst 32199 | . . . 4 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
| 2 | 1 | simp3bi 1147 | . . 3 ⊢ (𝑆 ∈ States → ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦)))) |
| 3 | sseq1 3989 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦))) | |
| 4 | fvoveq1 7433 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑆‘(𝑥 ∨ℋ 𝑦)) = (𝑆‘(𝐴 ∨ℋ 𝑦))) | |
| 5 | fveq2 6881 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
| 6 | 5 | oveq1d 7425 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) + (𝑆‘𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))) |
| 7 | 4, 6 | eqeq12d 2752 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦)) ↔ (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦)))) |
| 8 | 3, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))))) |
| 9 | fveq2 6881 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵)) | |
| 10 | 9 | sseq2d 3996 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵))) |
| 11 | oveq2 7418 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 ∨ℋ 𝑦) = (𝐴 ∨ℋ 𝐵)) | |
| 12 | 11 | fveq2d 6885 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑆‘(𝐴 ∨ℋ 𝑦)) = (𝑆‘(𝐴 ∨ℋ 𝐵))) |
| 13 | fveq2 6881 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑆‘𝑦) = (𝑆‘𝐵)) | |
| 14 | 13 | oveq2d 7426 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑆‘𝐴) + (𝑆‘𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝐵))) |
| 15 | 12, 14 | eqeq12d 2752 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦)) ↔ (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) |
| 16 | 10, 15 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) |
| 17 | 8, 16 | rspc2v 3617 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) |
| 18 | 2, 17 | syl5com 31 | . 2 ⊢ (𝑆 ∈ States → ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) |
| 19 | 18 | impd 410 | 1 ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 [,]cicc 13370 ℋchba 30905 Cℋ cch 30915 ⊥cort 30916 ∨ℋ chj 30919 Statescst 30948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-sh 31193 df-ch 31207 df-st 32197 |
| This theorem is referenced by: sto1i 32222 stlei 32226 stji1i 32228 |
| Copyright terms: Public domain | W3C validator |