|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > stj | Structured version Visualization version GIF version | ||
| Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| stj | ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isst 32232 | . . . 4 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
| 2 | 1 | simp3bi 1148 | . . 3 ⊢ (𝑆 ∈ States → ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦)))) | 
| 3 | sseq1 4009 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦))) | |
| 4 | fvoveq1 7454 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑆‘(𝑥 ∨ℋ 𝑦)) = (𝑆‘(𝐴 ∨ℋ 𝑦))) | |
| 5 | fveq2 6906 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
| 6 | 5 | oveq1d 7446 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) + (𝑆‘𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))) | 
| 7 | 4, 6 | eqeq12d 2753 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦)) ↔ (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦)))) | 
| 8 | 3, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))))) | 
| 9 | fveq2 6906 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵)) | |
| 10 | 9 | sseq2d 4016 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵))) | 
| 11 | oveq2 7439 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 ∨ℋ 𝑦) = (𝐴 ∨ℋ 𝐵)) | |
| 12 | 11 | fveq2d 6910 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑆‘(𝐴 ∨ℋ 𝑦)) = (𝑆‘(𝐴 ∨ℋ 𝐵))) | 
| 13 | fveq2 6906 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑆‘𝑦) = (𝑆‘𝐵)) | |
| 14 | 13 | oveq2d 7447 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑆‘𝐴) + (𝑆‘𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝐵))) | 
| 15 | 12, 14 | eqeq12d 2753 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦)) ↔ (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) | 
| 16 | 10, 15 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 ∨ℋ 𝑦)) = ((𝑆‘𝐴) + (𝑆‘𝑦))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) | 
| 17 | 8, 16 | rspc2v 3633 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) | 
| 18 | 2, 17 | syl5com 31 | . 2 ⊢ (𝑆 ∈ States → ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵))))) | 
| 19 | 18 | impd 410 | 1 ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 [,]cicc 13390 ℋchba 30938 Cℋ cch 30948 ⊥cort 30949 ∨ℋ chj 30952 Statescst 30981 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-hilex 31018 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-sh 31226 df-ch 31240 df-st 32230 | 
| This theorem is referenced by: sto1i 32255 stlei 32259 stji1i 32261 | 
| Copyright terms: Public domain | W3C validator |