Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stlei | Structured version Visualization version GIF version |
Description: Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stle.1 | ⊢ 𝐴 ∈ Cℋ |
stle.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
stlei | ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → (𝑆‘𝐴) ≤ (𝑆‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stle.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | chshii 29876 | . . . . . . . . 9 ⊢ 𝐵 ∈ Sℋ |
3 | shococss 29943 | . . . . . . . . 9 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐵 ⊆ (⊥‘(⊥‘𝐵)) |
5 | sstr2 3942 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (⊥‘(⊥‘𝐵)) → 𝐴 ⊆ (⊥‘(⊥‘𝐵)))) | |
6 | 4, 5 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (⊥‘(⊥‘𝐵))) |
7 | stle.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
8 | 1 | choccli 29956 | . . . . . . . 8 ⊢ (⊥‘𝐵) ∈ Cℋ |
9 | 7, 8 | pm3.2i 472 | . . . . . . 7 ⊢ (𝐴 ∈ Cℋ ∧ (⊥‘𝐵) ∈ Cℋ ) |
10 | 6, 9 | jctil 521 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∈ Cℋ ∧ (⊥‘𝐵) ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘(⊥‘𝐵)))) |
11 | stj 30884 | . . . . . 6 ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ (⊥‘𝐵) ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘(⊥‘𝐵))) → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) = ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐵))))) | |
12 | 10, 11 | syl5 34 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) = ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐵))))) |
13 | 12 | imp 408 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵) → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) = ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐵)))) |
14 | 7, 8 | chjcli 30106 | . . . . . . 7 ⊢ (𝐴 ∨ℋ (⊥‘𝐵)) ∈ Cℋ |
15 | stle1 30874 | . . . . . . 7 ⊢ (𝑆 ∈ States → ((𝐴 ∨ℋ (⊥‘𝐵)) ∈ Cℋ → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ≤ 1)) | |
16 | 14, 15 | mpi 20 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ≤ 1) |
17 | 1 | sto1i 30885 | . . . . . 6 ⊢ (𝑆 ∈ States → ((𝑆‘𝐵) + (𝑆‘(⊥‘𝐵))) = 1) |
18 | 16, 17 | breqtrrd 5124 | . . . . 5 ⊢ (𝑆 ∈ States → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ≤ ((𝑆‘𝐵) + (𝑆‘(⊥‘𝐵)))) |
19 | 18 | adantr 482 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵) → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ≤ ((𝑆‘𝐵) + (𝑆‘(⊥‘𝐵)))) |
20 | 13, 19 | eqbrtrrd 5120 | . . 3 ⊢ ((𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵) → ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐵))) ≤ ((𝑆‘𝐵) + (𝑆‘(⊥‘𝐵)))) |
21 | stcl 30865 | . . . . . . 7 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
22 | 7, 21 | mpi 20 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
23 | stcl 30865 | . . . . . . 7 ⊢ (𝑆 ∈ States → (𝐵 ∈ Cℋ → (𝑆‘𝐵) ∈ ℝ)) | |
24 | 1, 23 | mpi 20 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝑆‘𝐵) ∈ ℝ) |
25 | stcl 30865 | . . . . . . 7 ⊢ (𝑆 ∈ States → ((⊥‘𝐵) ∈ Cℋ → (𝑆‘(⊥‘𝐵)) ∈ ℝ)) | |
26 | 8, 25 | mpi 20 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝑆‘(⊥‘𝐵)) ∈ ℝ) |
27 | 22, 24, 26 | 3jca 1128 | . . . . 5 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ∈ ℝ ∧ (𝑆‘𝐵) ∈ ℝ ∧ (𝑆‘(⊥‘𝐵)) ∈ ℝ)) |
28 | 27 | adantr 482 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵) → ((𝑆‘𝐴) ∈ ℝ ∧ (𝑆‘𝐵) ∈ ℝ ∧ (𝑆‘(⊥‘𝐵)) ∈ ℝ)) |
29 | leadd1 11548 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ (𝑆‘𝐵) ∈ ℝ ∧ (𝑆‘(⊥‘𝐵)) ∈ ℝ) → ((𝑆‘𝐴) ≤ (𝑆‘𝐵) ↔ ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐵))) ≤ ((𝑆‘𝐵) + (𝑆‘(⊥‘𝐵))))) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵) → ((𝑆‘𝐴) ≤ (𝑆‘𝐵) ↔ ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐵))) ≤ ((𝑆‘𝐵) + (𝑆‘(⊥‘𝐵))))) |
31 | 20, 30 | mpbird 257 | . 2 ⊢ ((𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵) → (𝑆‘𝐴) ≤ (𝑆‘𝐵)) |
32 | 31 | ex 414 | 1 ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → (𝑆‘𝐴) ≤ (𝑆‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3901 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 ℝcr 10975 1c1 10977 + caddc 10979 ≤ cle 11115 Sℋ csh 29577 Cℋ cch 29578 ⊥cort 29579 ∨ℋ chj 29582 Statescst 29611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 ax-hilex 29648 ax-hfvadd 29649 ax-hvcom 29650 ax-hvass 29651 ax-hv0cl 29652 ax-hvaddid 29653 ax-hfvmul 29654 ax-hvmulid 29655 ax-hvmulass 29656 ax-hvdistr1 29657 ax-hvdistr2 29658 ax-hvmul0 29659 ax-hfi 29728 ax-his1 29731 ax-his2 29732 ax-his3 29733 ax-his4 29734 ax-hcompl 29851 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-pm 8693 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-icc 13191 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-cnfld 20703 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cn 22483 df-cnp 22484 df-lm 22485 df-haus 22571 df-tx 22818 df-hmeo 23011 df-xms 23578 df-ms 23579 df-tms 23580 df-cau 24525 df-grpo 29142 df-gid 29143 df-ginv 29144 df-gdiv 29145 df-ablo 29194 df-vc 29208 df-nv 29241 df-va 29244 df-ba 29245 df-sm 29246 df-0v 29247 df-vs 29248 df-nmcv 29249 df-ims 29250 df-dip 29350 df-hnorm 29617 df-hvsub 29620 df-hlim 29621 df-hcau 29622 df-sh 29856 df-ch 29870 df-oc 29901 df-ch0 29902 df-chj 29959 df-st 30860 |
This theorem is referenced by: stlesi 30890 stm1i 30892 |
Copyright terms: Public domain | W3C validator |