![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rng2idlsubg0 | Structured version Visualization version GIF version |
Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlsubgsubrng.r | β’ (π β π β Rng) |
rng2idlsubgsubrng.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlsubgsubrng.u | β’ (π β πΌ β (SubGrpβπ )) |
Ref | Expression |
---|---|
rng2idlsubg0 | β’ (π β (0gβπ ) β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlsubgsubrng.r | . . 3 β’ (π β π β Rng) | |
2 | rng2idlsubgsubrng.i | . . 3 β’ (π β πΌ β (2Idealβπ )) | |
3 | rng2idlsubgsubrng.u | . . 3 β’ (π β πΌ β (SubGrpβπ )) | |
4 | 1, 2, 3 | rng2idlsubgsubrng 21144 | . 2 β’ (π β πΌ β (SubRngβπ )) |
5 | subrngsubg 20471 | . 2 β’ (πΌ β (SubRngβπ ) β πΌ β (SubGrpβπ )) | |
6 | eqid 2727 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
7 | 6 | subg0cl 19073 | . 2 β’ (πΌ β (SubGrpβπ ) β (0gβπ ) β πΌ) |
8 | 4, 5, 7 | 3syl 18 | 1 β’ (π β (0gβπ ) β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2099 βcfv 6542 0gc0g 17406 SubGrpcsubg 19059 Rngcrng 20076 SubRngcsubrng 20464 2Idealc2idl 21125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-sca 17234 df-vsca 17235 df-ip 17236 df-0g 17408 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-grp 18878 df-subg 19062 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-subrng 20465 df-lss 20798 df-sra 21040 df-rgmod 21041 df-lidl 21086 df-2idl 21126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |