MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprng Structured version   Visualization version   GIF version

Theorem rngqiprng 21235
Description: The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
Assertion
Ref Expression
rngqiprng (𝜑𝑃 ∈ Rng)

Proof of Theorem rngqiprng
StepHypRef Expression
1 rngqiprngim.p . 2 𝑃 = (𝑄 ×s 𝐽)
2 rng2idlring.r . . 3 (𝜑𝑅 ∈ Rng)
3 rng2idlring.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
4 rng2idlring.j . . . . . 6 𝐽 = (𝑅s 𝐼)
5 rng2idlring.u . . . . . . 7 (𝜑𝐽 ∈ Ring)
6 ringrng 20205 . . . . . . 7 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
75, 6syl 17 . . . . . 6 (𝜑𝐽 ∈ Rng)
84, 7eqeltrrid 2838 . . . . 5 (𝜑 → (𝑅s 𝐼) ∈ Rng)
92, 3, 8rng2idlsubrng 21204 . . . 4 (𝜑𝐼 ∈ (SubRng‘𝑅))
10 subrngsubg 20469 . . . 4 (𝐼 ∈ (SubRng‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
119, 10syl 17 . . 3 (𝜑𝐼 ∈ (SubGrp‘𝑅))
12 rngqiprngim.q . . . . 5 𝑄 = (𝑅 /s )
13 rngqiprngim.g . . . . . 6 = (𝑅 ~QG 𝐼)
1413oveq2i 7363 . . . . 5 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1512, 14eqtri 2756 . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
16 eqid 2733 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1715, 16qus2idrng 21212 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
182, 3, 11, 17syl3anc 1373 . 2 (𝜑𝑄 ∈ Rng)
191, 18, 7xpsrngd 20099 1 (𝜑𝑃 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  .rcmulr 17164   /s cqus 17411   ×s cxps 17412  SubGrpcsubg 19035   ~QG cqg 19037  Rngcrng 20072  1rcur 20101  Ringcrg 20153  SubRngcsubrng 20462  2Idealc2idl 21188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-imas 17414  df-qus 17415  df-xps 17416  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-nsg 19039  df-eqg 19040  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-subrng 20463  df-lss 20867  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-2idl 21189
This theorem is referenced by:  rngqiprngghm  21238  rngqiprngho  21242
  Copyright terms: Public domain W3C validator